
ISRAEL JOURNAL OF MATHEMATICS, VoL 51, No. 3, 1985 

A CONSTRUCTION OF ALL 
NORMAL SUBGROUP LATTICES OF 

2-TRANSITIVE AUTOMORPHISM GROUPS 
OF LINEARLY ORDERED SETS 

BY 

MANFRED DROSTE "'t AND SAHARON SHELAH ~ 
"Fachbereich 6 - -  Mathematik, Universitiit Essen, 4300 Essen I, FRG ; and 

h Institute o[ Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel 

ABSTRACT 

We give a complete classification and construction of all normal subgroup 
lattices of 2-transitive automorphism groups A(I)) of linearly ordered sets 
(~, <). We also show that in each of these normal subgroup lattices, the 
partially ordered subset of all those elements which are finitely generated as 
normal subgroups forms a lattice which is closed under even countably-infinite 
intersections, and we derive several further group-theoretical consequences 
from our classification. 

§I. Introduction 

An infinite l inearly o rde red  set ( "cha in" )  (1~, _---) is called doubly  h o m o g e n e -  

ous, if its a u t o m o r p h i s m  group,  i.e. the g roup  of all o rde r -p rese rv ing  p e r m u t a -  

tions, A(f~)  - Aut(( l 'L  --- )), acts 2-transi t ively on it. Chains  (1~, < ) of this type 

and certain normal  subgroups  of their  a u t o m o r p h i s m  groups  A (11) have  been  

used, e.g., for  the cons t ruc t ion  of infinite s imple tors ion-free  groups  (H igman  [8]) 

or, in the theory  of la t t ice-ordered  groups  ( / -groups) ,  in deal ing With embedd ings  

of a r b i t r a r y / - g r o u p s  into s imple  d iv i s ib l e / -g roups  (Hol land  [9]); for  a var ie ty  of 

fur ther  results see Glass  [7]. In this pape r  we classify and construct  all no rmal  

subgroup  lattices N ( A  (1~)) of the groups  A (~) ,  if (1~, < ) is a doubly  h o m o g e n e -  

ous chain. O u r  classification does  not  assume the class of all doubly  h o m o g e n e -  
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ous chains (l), < ) to be given. As a main consequence we obtain that in each of 
these lattices N(A (1~)), the partially ordered set of all those elements which are 
fnitely generated as normal subgroups forms a lattice (under inclusion) which is 
even closed under countable intersections. Furthermore, we obtain several 
structure results on N(A (12)) first proved in [5], [2] again as consequences of our 
analysis (see Corollaries 2.14, 2.15), and we solve an open problem of [5; p. 124] 
(cf. Corollary 3.16). 

Let (f~, _-< ) be a doubly homogeneous chain in the following. Obvious normal 
subgroups of A (11) are R(I)) (L(f~)), the group of all automorphisms with 
support bounded on the left (right), respectively, and B(f~)= R(fl)fq L(f~). 
According to Higman [8], B( f0  is always simple and contained in every 
non-trivial normal subgroup of A (f~). Holland [9] and Lloyd [11] showed that if 
the cofinality cof(fl) (coinitiality coi(O)) of lq is countable, then the group 
R(Iq)/B(I-I) (L(II)/B(I))) is simple. Contradicting [12], Ball [1] presented a 
certain class of doubly homogeneous chains l-I with cof(l))=N~ where 
R(~)/B(f~) is not simple. In [5], one of the present authors showed for any 
doubly homogeneous chain l-I that if cof(f l)~ No, then R(I))/B(II) has indeed 
uncountably many normal subgroups; furthermore, any subnormal subgroup of 
A(I'~) is normal. Moreover, in [5] the lattice N(A(I))) was shown to be 
isomorphic to a certain lattice depending only on the structure of the Dedekind- 
completion (l), --_< ) of (1), _-< ) (cf. also Ball and Droste [2]). Further group- 
theoretical properties of the lattice N(A (iq)) will be contained in [6]. 

Our main result mentioned above and consequences are stated explicitly in §2. 
Here we construct to each doubly homogeneous chain 1"~ a pair of trees of a 
certain type defined independently of (ll, _-< ) and to these trees a corresponding 
lattice, which is shown to be isomorphic to the partially ordered subset of 
N(A(II)) consisting of all finitely generated non-trivial normal subgroups of 
A (f~). The proof, which is contained in §3, uses the characterization of [5] of the 
lattice N(A(fl)) mentioned above and is based on an analysis of certain 
convergence properties of fixed point sets of automorphisms of II. In order to be 
self-consistent, all the background results developed in [5] (see also [2]) which 
are employed here are reviewed. Then in §4 we prove conversely that each tree 

of the given type can be realized through a doubly homogeneous chain (fl, _-< ). 

§2. The main results 

Recall that a tree (T, _- ) is a partially ordered set with a smallest element such 
that for each a E T the set {b ~ T I b =< a} is well-ordered. Linearly ordered sets 
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will also be called chains. If (T, < )  is a tree and O f A  C_(T, < )  a chain, an 

element x E T is a strict upper bound of A if x > a for all a @ A ; let MA always 

be the set of all minimal strict upper bounds of A. We also write M, = M{a~ for 

a ~ T. Hence Mo = O iff a is a maximal element in T. As usual, in the following 

cardinals are identified with the least ordinal of their cardinality. For a mapping 

f, let a t denote its value at a. 

DEFINITION 2.1. We will consider trees (T, < ) with a mapping qb: T--~ {1,2, 3} 

and order-relations --<a on Mo for each a E T with M a # Q  such that the 

following conditions are satisfied: 

(1) If a E T and a ® = 2, then M, = O and the set {x E T I x < a} is non-empty 

and contains no maximal element. 

(2) If a E T and Ma # 0 ,  then 

(i) IM, I is a regular uncountable cardinal; 

(ii) (M,, < ,  ) is well-ordered (inversely well-ordered) and isomorphic (anti- 

isomorphic) to IMo ], if a * =  3 (a ®= 1), respectively; 

(iii) x ® = 1 (x* = 3) for all x E .Mr, if a* = 3 (a* = 1), respectively. 

(3) If O #  P U_(T, <_-) is a chain which contains no maximal element, then 

either ( i)IMp I = 1 and M~* = {2}, 

or (ii) I Me I = 3 and Me* = {1,2, 3}. 

NOTATION. Let M i d ( T ) = { a  E Tla*=2,  IM~x~rfx<,~l=3}, the set of all 

"middle" points of T (in a sense explained later), and T - =  T\Mid(T).  

Let ~rn (JL)  be the class of all trees (T, < ) satisfying these conditions and, in 

addition, (min T)* = 3 ((rain T)* = 1). We put ~ = ~R U J-L. 

Note that any T E 3 has either precisely one or uncountably many elements. 

DEFINITION 2.2 of a filter B(T) on T for T E 

For each a E T with M, # O, let 

B, = {C _C M, I C is closed and unbounded above (below) in M,}, 

if (Ma, < ,  ) is well-ordered (inversely well-ordered), respectively. We call a 

subset B C_ T big, if there is a set A _C B which satisfies min(T) E A and the 

following three conditions: 

(i) if a E A ,  t hen{x~TIx<a}C_A ; 
(ii) if a E A with Mo # 0 ,  then A n 3,I, E B, ; 

(iii) if a E T, X = {x E T Ix < a} _C A, and X is non-empty and contains no 

maximal element, then Mx C A. 

Let B(T) be the set of all big subsets of T. 
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It is easy to see that B ( T )  is a filter on the set T (i.e., in the power set of T) 

and, in particular, closed under countable intersections, since each Ba (a E 

T, Mo fi O) has this property. 

NOTATION. Let T E  J ,  a E M i d ( T )  and M~xcrlx<,~ = {y, a, z} with y® = 1, 

a * = 2 ,  z * = 3 .  Then we also write y =a~,  z =a3.  

DEFINITION 2.3. For T E 3-, let T + be the set of all subsets A of T satisfying 

the following conditions: 

(i) { x ~ T I x < a } _ C A  for each a E A ;  

(ii) if a E M i d ( T )  a n d A n { a ~ , a 3 } ~ O ,  then a C A ;  

(iii) if a ~ T - , a * = 2 a n d { x ~ T l x < a } _ C A ,  then a E A .  

Note that (T +, C_ ) is a partially ordered set closed under arbitrary intersec- 

tions, hence B ( T ) A  T + is a filter in (T +, C_) which is closed under countable 

intersections. Furthermore, for each A C_ T satisfying the conditions (i)-(iii) of 
(2.2) we have A E T +. 

DEFINITION 2.4 of the partially ordered set (T*, _-<) for T E J 

For two subsets X, Y E T + we put X _-< Y if there exists a B E B ( T ) N  T + 

or, equivalently, B G B ( T )  - -  with X A B  C_ Y, and X - Y  if X_-  < Y and 
Y_-< X. Let IX] = {Y E T +l X -  Y} be the equivalence class of X E T + with 

respect to - ,  and let T* = {[X] I X E T+}. We define IX] -< [Y] for X, Y E T + 

by X -< - Y. Then (T*, _-<) is a partially ordered set which is dosed under 
countable infima by the remarks following Definition 2.3. 

Clearly, [0]  is the smallest and [T] the largest element of T*, and [{rain T}] is 

the smallest element of T*\{[O]}. Moreover, if T has only one element, then 

B ( T )  ={T}, T + ={O, T} and I T*I =2.  Conversely, I T*I = 2  implies I TI = 1. 
Next we give a further still easy but non-trivial and important 

EXAMPLE 2.5. Assume that each maximal chain in T E J has precisely two 

elements. Then T = T-  = {a} t] M, where a = min T and (M,, <_-, ) is well- 

ordered (inversely well-ordered) and isomorphic (anti-isomorphic) to K---- 

[ M, I = I T [, a regular uncountable cardinal, if T ~ JR (T ~ JL), respectively. A 

subset B_CT is big iff a E B  and B N M o _ ~ C  for some C E B ~ .  Also, 

T + = {A _C T I a E A} U{Q}, and for A , B  E T+\{Q} we have [A]<_- [B] in T* 

iff A ACC_B for some C E B , .  Thus (T* \{[O]}, _<- ) is isomorphic to the 

Boolean algebra A (K)= ~(K)/5~(K), where here ~ ( r )  is the power set of K and 
5~(r) the ideal of "thin" subsets of K (a subset A C_ I< is called "thin", if 
A N C = O for some subset C _C K which is closed and unbounded above in r ; 
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cf. [10; p. 58]). In particular, under the assumption of this example the structure 

of (T*, _-<) is uniquely determined by K = I TI. 

If ~ is an infinite chain and k ~ N, A (~) is called k-transitive if for any subsets 

A, B C_ l l  with I A [ =  t B { =  k there exists ~ E A ( ~ )  such that A ~ = B. The 
following remark is well-known. 

REMARK 2.6. Let (l-l, _--- ) be an infinite chain. The following are equivalent: 
(1) A (1~) is k-transitive for some k E N with k _-_ 2. 
(2) A (1~) is k-transitive for any k ~ N with k _-> 2. 
(3) ~ is unbounded,  and any two intervals [a, b]~, [c, d]n (a, b, c, d E 1~, a < b, 

c < d) are order-isomorphic. 

If one of these conditions is satisfied, ({L --< ) is called doubly homogeneous. 

For a group G, let ( a ) =  A {N}a  E N,~ G}, the normal subgroup of G 
generated by a ~ G, N(G) = {N [ {1} ~ N <J G} the set of all non-trivial normal 
subgroups of G, and 

NI(G) -- {(a) [ a E G\{1}} C_ N(G), 

the set of all non-trivial normal subgroups of G which are generated by a single 
element. Then we have the following 

PROPOSITION 2.7 ([5: Prop. 6.3]). Let fl be a doubly homogeneous chain. Then 
(N1(A(f0) , C_) is a join-semilattice, i.e. (a) .([J)~ NI(A(12)) for all a, 13 E 
A(II)\{1}, and (N(A(fO), C_ ) is a complete algebraic (in particular distributive) 
lattice isomorphic to the lattice of all ideals of (NI(A(i2)), C_ ). 

Because of this result, which follows immediately from [3; Theorem XIII 18] 
and [7; Theorem 2.3.1], NI(A (F0) coincides with the set of all compact  elements 
of the complete algebraic lattice (N(A(~)),  C_) (cf. [3; Theorem VIII 8]), i.e. 
with the set of all elements of N(A (~)) which are finitely generated as normal 
subgroups, and it suffices to examine the structure of the semilattice N~(A (f0). If 
(A, _-< ), (B, =< ) are partially ordered sets, let (A, -< ) × (B, = ) be the set A × B 
together with a partial ordering defined by (a, b) < (a' ,  b') iff a _-< a '  and b _-< b' 
(a, a ' E  A, b, b' ~ B). We now come to our 

MAIN TUEOREM 2.8. Up to isomorphism, the partially ordered sets 
(NI(A(I0)  , C_ ), where ~ ranges through all doubly homogeneous chains, are 
precisely the partially ordered sets (T*, <= ) x (T*, <- ), where Tt E 3-i_, T, E 3"~. 
Moreover, these partially ordered sets are lattices which are closed under countable 
infima. 



228 M. DROSTE AND S. SHELAH Isr. J. Math. 

This theorem follows immediately from Theorems 2.9-2.11 given below which 
even sharpen (2.8). We proceed as follows. In Construction 2.16 we will define 
for each doubly homogeneous chain [~ two trees T,(fl) ~ fR, T~ (fl) E fL. Then 

we show: 

THEOREM 2.9. Let ~ be a doubly homogeneous chain and T~ = Tt (~)), 
T, = 7", ([I). Then the partially ordered sets (N1(R(fl)), C_ ) and (T*, < ), 
(NI(L ([I)), C_ ) and ( T~, <= ), and (NI(A (ll)), C_ ) and ( T*, < ) × ( T*, <= ), respec- 
tively, are isomorphic. 

Here the fact that T*, T~, T~ x T* have smallest elements is reflected by 

Higman's result (see (2.13)) that B(II) is the smallest element of NI(R(II)), 
Nl(L(fl)), NI(A(II)), respectively. The proof of Theorem 2.9 is given in §3. It 
heavily uses methods developed in [5] (cf. also [2]) concerning fixed point sets of 
automorphisms a ~ A ({1). The necessary background results are reviewed at 

the beginning of §3. 

COROLLARY 2.10. Let 11 be a doubly homogeneous chain. Then 
(NI(A (II)), C_ ), (N~(R (ll)), C_ ), and (NI(L (ll)), C ) are lattices which are closed 
under countable infima. NI(A ({I)) is closed under countable intersections. 

PROOF. It suffices to show the first assertion, since this implies the final 
statement of the corollary. By Proposition 2.7, the three partially ordered sets 
under examination are join-semilattices. Hence the result follows from Tt (fl) 
fL, T,(II)E fiR, Theorem 2.9, and Definition 2.4. 

Note that the simple group-theoretical result that NI(A (l-l)) is closed under 
(even countably-infinite) intersections appears here as a consequence of our 
set-theoretic characterization of (NI(A (II)), C_ ). In fact, we have no other proof 

for this result. 
Conversely, in §4 we show that each tree T E f can be realized through a 

doubly homogeneous chain ll: 

THEOREM 2.11. Let TL E f L ,  TR ~ fR. Then [or any regular cardinal A with 
A >-_ [ TL [ + [ TR [ there exists a doubly homogeneous chain (1-1, < ) of cardinality A 
and trees T~(fl), T,(I~) such that (TL, ----<, ) = (T, --<t ), (TR, ----<R ) = (T,, _--<, ) and 
hence, in particular, (N~(A (l-l)), C_ ) = ( T*, < ) × ( T*, <- ). Moreover, the set 
(fl, _-) can be chosen such that each point a ~ [~ has countable coterminality. 

Here, an element x ~ fI has countable coterminality if there are countable 
subsets A, BC_~) such that x = s u p A  = i n f B  and a < x < b  for all a E A ,  
b E B. Before proceeding, let us fix some 
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NOTATION. A t3 B, ~ A, denote disjoint unions. If (M, _-< ) is a partially 

ordered set, A, B _C M and x, y E M, let [x, y]a = {z E A x _-< z _-< y}, and write 

A < B  (A _--- B)  iff a < b (a _-< b ) fo r  all a E A ,  b EB,  andx  <=A i f f{x}<=A;A 
is called unbounded above (below) in M if there exists no x E M such that A -<_ x 

(x _-< A),  unbounded in M if A is unbounded above and below in M, and 

unbounded (unbounded above, below) if A is unbounded (unbounded above, 

below) in A. A is called dense if for all a, b E A with a < b there exists a E A, 

such that a < c < b. 

Now let (f~,_-<) be a dense unbounded chain. We let (1~, < )  denote the 

Oedekind-completion of (11, =< ) and ~ = 1~ U { - 0% ~} with - oo < x < ~ for all 

x ~ ~.  We always consider f~ as a subset of ~ ,  and if we have to distinguish 

between different orders, a < b for elements a, b E ~ will always mean a "<a b, 

i.e. with respect to the natural order of ~ .  Whenever a, b E 1~ with a < b, let 

[ a , b ] = { z ~ l a < = z < = b } .  Similarly, if A_CI~, supA and infA are always 

taken in (~, _-< ) if not specified explicitly otherwise. 

We put co fn (a )=co f6 (a )=min{ IAI lA  C(~, A <a, a = s u p A }  for a E 

1~ U {~}, the cofinality of a, and we write cof (a )  if there is no ambiguity about the 

chain 11. Similarly we put coi (a)  = min {I A [ I a C ~,  a < A, a = inf A } for each 

a E ~ U { -  o o}, the coinitiality of a. If a E ~  and c o l ( a ) =  coi(a) ,  let c o t ( a ) =  

cof(a) ,  the coterminality of a. Let cof ( lq )=cof (~) ,  c o i ( l ~ ) = c o i ( - ~ ) ,  and 

cot(l l)  =cof(l'~) if cof(f~) =coi(f l ) .  If A C B  C ~ ,  A is called closed in B if 

B tq {sup C, inf C} C_ A for any O # C _C A. 

As is well-known, any doubly homogeneous chain is dense and unbounded. 

Next we wish to give two examples for the construction of the tree T,(Iq) E fir 

which serve to obtain consequences of Theorem 2.9. 

EXAMPLE 2.12. Let (12, _--< ) be a doubly homogeneous chain. 

(a) For T, = T,(fl), we will have I T*[ = 2 iff 7", = {oo} iff cof(l)) = No. In this 

case, M~ = ~ and ~* = 3. Similarly, Tt (~) = { - ~} iff coi (l-l) -- ~o. 

(b) Suppose r = cof ( f l ) ~  ~Io and there exists a set A _C 1) such that A is closed 

and unbounded above in ~ with c o i ( a ) = N o  for each a E A. Choose a 

well-ordered subset M _C A such that M = r and M is closed and unbounded 

above in 1~. We put 7", = T,(Iq)= M t ]  {oo} and define a partial order <,  on 7", 

such that a < , b  if[ a =~,  b EM,  for any a,b E T,. Hence in (T,, < , )  we have 

M~ = M and Ma = O for each a E M. Furthermore, put ~* = 3, a* = 1 for each 

a ~ M, and (M~, <~) = (M, _--<a). In particular, 7", E fir and in 7", each maximal 

linearly ordered subset has precisely two elements. Hence by Example 2.5 we 

have (T*\{[~]}, =< ) = M(K). 
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Now we wish to use (2.12) to derive consequences of Theorem 2.9. First let us 
note some basic and well-known properties of N(A(f~)): 

PROPOSITION 2.13. Let l'l be a doubly homogeneous chain. Then: 
(a) Any normal subgroup of R(fl) or L({I) is also normal in A(I)). 
(b) B({I) is simple and the smallest element of N(A(I))) and hence also of 

N,(A(fl)), N,(R([I)), and N,(L(I))). 

Here (a) has been generalized in [5; 6.15]; indeed any subnormal subgroup of 
A (lI) is normal in A (1)). 

As a first consequence we obtain the following important result already 
mentioned in the introduction: 

COROLLARY 2.14 ([5; Satz 6.34, Kor. 6.25]). Let l-I be a doubly homogeneous 
chain. Then : 

(a) A(~Q), R(I)), L(O)ENI(A(~)).  
(b) There exist smallest normal subgroups N~,N2,N3<~A(~)) satisfying 

B(~)C+NICR(fl), B(I-I)C+N2C_L(I~), and N3~L(f l )UR(II) .  We have 
Sl , N2, N3 E S~(A (l-l)). 

(c) R(I))/B(fl) is simple iff col(O)= No. 
(d) L(I"t)/B(O) is simple if/] coi (~)= No. 
(e) B (~'l), R (~), and L (~) are all non-trivial proper normal subgroups of A (l-l) 

if and only if cot(l'l)= No. 

Here in (c)-(e) the "if" part is due to Holland [9] and Lloyd [11], In Ball [1], 
(a), (b), the non-simplicity of R (I))/B (l-l) and the subsequent Corollary 2.15 have 
been proved under the special assumption that cof(f~)= N1, coi (~)= No, and 
there exists a subset A C_ ~ which is closed and unbounded above in ~ with 
cot(a) = No for each a E A. 

PROOF. (a) This follows from Theorem 2.9 and the fact that [T,] ([T~], 
([T~], [T,])) is the largest element of (T*, _-< ) ((T*,-_< ), (T~ x T*, _-< )), respec- 

tively. 
(b), (c), (d). We prove the result for R(I'~). The partially ordered set (T*, _-<) 

satisfies [Q] < [{oo}] __< T*\{[Q]}. If ~b :(T*, _-< )--* (N~(R (l))), C_ ) is any isomor- 

phism (which exists by (2.9)), then [Q]* = B(I~) and [T,]* = R(I-I) by (a), and 
thus we may put N~ = [{oo}]*. Then by (2.12)(a) we have N ~ R ( ~ ) i f f  [{oo}] < [7",] 
iff cof(l))~ No. Now a symmetry-argument implies the result for L(~). Finally, 

let N3 = N~. N2. 
(e) By (c) and (d). 
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As an immediate consequence of Theorem 2.9 and Example 2.12 we have 

COROLLARY 2.15 ([5; Satz 7.14]; [1] if K = N~). Let fl be a doubly homogene- 
ous chain with K = col(12)~ 1~o. Assume there exists a subset A C_ ~ which is 
closed and unbounded above in ~ such that coi(a) = ~o for each a E A. Then 
(N~(R(II))\{B(I))},C_) is isomorphic to the Boolean algebra ~(K) defined in 
Example 2.5. 

For a generalization of this result see [5, 6]. 

NOTATION. If (A~, _<-, ), i = 1,2, are partially ordered sets, we write (Al, ~1 ) 
(A2,<2) iff A1C_A2 and, for all a,b EA~,  a <,b  iff a Nab. If an element a is 

the supremum of a set Z _C A~ with respect to N1 (and maybe not w.r.t. --<2), we 

write a =SUpA, Z. If I is a set of ordinals, L(I)  denotes the set of all 

limit-ordinals belonging to I. 

If (T, _-< ) is a tree, we will call any chain P _C T which is unbounded above in T 

a path in T. Now we come to the already announced 

CONSTRUCTION 2.16. For each doubly homogeneous chain fl, we define a 

"right" tree T, = T,(I~) E 3-R and a "left" tree T~ = Tt(fl) E ~-L. 

CONSTRUCTION OF (T,, -<-r ). By transfinite induction, we will define an index 

set L consisting of ordinals such that i E L whenever 0_- < i _-< m -- max(L), and 

trees (T, _-<~ ) with T~ C_ ~ for each i E I,, (T,  <=~ ) C_ (T j, <-_j ) if i < j (i, j E I,), and 

(Tr,<=,):=(T,,,,<-__,.). For each i E L  and a E T ~  we will choose an element 

a '~ ( l ) \T~)U{a} ;  then we always put Va=[a' ,a]  ({a},[a,a'])i f  a ' < a  
(a = a ' ,  a < a'), respectively; furthermore, let S~ = T~\I...Jj<~ Tj and 

Z, = {a E S, ] a '  < a, cof(a)  ¢ ~o, or a < a ' ,  coi(a) / tto}. 

For each i E L, (T~,--<~ ) will satisfy the following property: 

(*) For a n y  a, bET~ with a / b ,  we have either VorqV~=~3, or VaC 
%,\{b,b'}, or V,, C_ V,~\{a,a'}; moreover, Vb G V,\{a,a'} iff a <,b. All 

elements of S~ are maximal in (T~,--<i). 

In particular, b E V,l{a} implies a <~b and a ff_S~ (a,b E T~). 
First, let To = {~} and choose ~ ' E  fi  arbitrarily. 

Now let i ->_ 0 and (Tj, -<_j ), {a'[ a E T~}, S,, Z~ already be defined (j -<_ i) such 

that T~ satisfies (*). If Z~ = Q ,  let (T,_-<,)=(T~,_--N,), I ,={jl j<=i},  and our 

construction is finished. (For example, for i = 0 this is the case iff cof (fl) = ~o ; cf. 

(2.12).) Now assume Z ~ / Q .  For each a E Z with a ' <  a note that V, N T~ = {a} 
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by the conclusion to (*). Let Ma C_ (a',  a)  be closed and unbounded above in 

(a',  a)  such that (M~,_-<6)= col(a), in particular, (Ma, =<a) is well-ordered and 

a = s u p 6 M a .  For each x ~ M a  choose an element x ' E ( l  with x < x ' <  

min{z E M~ I x < z}. Similarly, if a E Zi and a < a' ,  let Ma C (a, a') be closed 

and unbounded below in (a, a ')  such that (Ma, ~ a )  is anti-isomorphic to coi(a);  

in particular, (Mo,_-<~) is inversely well-ordered and a = inf~M,,. For each 

x E Ma choose x ' ~  1~1 with max{z ~ Ma [ z < x} < x ' <  x. Put &+l = U ~ z , M , ,  

and let (% +1, ~i+1 ) be the tree satisfying T~+I = T~ 0 S~÷t, ( T,, _-<~ ) _C ( Z +t, --<,+~ ), 

and x <~+~ b for x ~ T~+I, b ~ M, C_ S~+~ (a E Z~) iff x E T~ and x ~ a .  Then for 

each a ~ Z~, the set Mo indeed coincides with the set of all minimal strict upper 

bounds of a in (T~+,,=<,+~). 

Finally, let i be a limit ordinal and (Tj, _-<j ) and a' ,  Vo (a E Tj) already be 

defined such that Tj satisfies (*) (with i replaced by ]) for each j < i. First note 

that any path P of U j<, 7], is a maximal path if and only if P satisfies: Whenever 

a E P n Tj for j < i, x E Tj and x <j a, then x E P. Now for each maximal path P 

of U,<,T, let Vp = no~p Vo C_• Then V p # O  by (*) and the Dedekind- 

completeness of 1~. Let ap, cp E 1~ with ae -< cp and Vp = [ap, cp]. If ap = cp, put 

a ~, = ae and M* = {ae}. If ap < cp, choose a ~,, be, c ~, E ~ such that ap < a ~, < 

bp < c'p< Cp, and let b e - b e ,  M * =  {ap, be, cp}. Note that these elements are 

well-defined since if O is another maximal path in Uj<,Tj ( Q ~  P), then 

Vo n Ve = O by (,). Put 

S~ = 0 {Me 1P maximal path in U Tj }, 
]<i 

and let (T~, _-<~ ) be the tree satisfying T~ = Ui<, TjL) S~ and a <~b for a, b E T~ iff 

a, b E Tj and a <~b for some j < i, or else a ~ U~<, T~, b E Me C_ Si for some 

maximal path P C_ U,<~ T~ with a ~ P. Note that if there exist no paths 
P C_ U~<, Tj, we get S~ = ~ and U j<, Tj = T, = T,. 

After at most Ifil steps our construction of T, = (T,, <=,) will be finished. 

NOTATION. If i E L(L) and Q is a path in U,<,T~, let P be the uniquely 

determined maximal path of U,<~T~ containing (9. We put Vo = Vp, ao = ap, 

a+ = a'e,... , M ~ =  M*. Hence now we have M ~ =  Mo in (T, ,< , )  for any path 

Q in U~<, T~ (i ~ L(L)). 

CONSTRUCTION OF (T~,_-<~). Exactly as for (T~,_-<,); we only start with 

To = { - o~} and ( - oo)' G ~ such that ( - oo)' < oo'. 

DEFINITION 2.17. For T=T,(I-I)  or T=T~(I)) ,  we always define 

@: T--~ {1, 2, 3} by a* = 3 (2, 1) [a ~ T] if a '< a (a' = a, a < a'), respectively, 
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and we put (Mo,_-<°)=(Ma,<~)if  a ~ T, M ~ Q .  Then T , ( t l )~  J-R, T~(I1)~ 
3L. 

Note that if T =  Tr(ll) or T =  Tt(tl), a E M i d ( r ) ,  X={x E r l x  <ra}, and 

Mx = {ax, bx, Cx} with ® - ® * b x = 3, then bx a and ax a x -  1, 2, cx = = = 

minn(M,~) = al ,  c,~ = maxn(M×) = a 3  according to our notation. In this case we 

have 

a,=sup~{x~X]x®=l} and a3=inf~{xEXIx*=3}. 

It seems justified to call a E Mid(T) a middle point of T since it was chosen "in 

the middle" of the non-trivial interval [m, a3], i.e. at < a < a3. Also, note that if 

a E T-  with a * =  2, then 

a = supn{x E T Ix <~a,x ®= i t  = infn{x E T Ix <ra, x *= 3}. 

Finally, for any a @ T we have M, = Q iff one of the following three (mutually 

exclusive) conditions holds: 

(i) a'<a, cof (a )=No,  or a < a ' ,  co i (a )=No;  

(ii) {a} = Me where P = {x ~ r lx <Ta} is unbounded above; 

(iii) a E Mid (T). 

It is easy to see that the tree Tr = Tr(t)) as constructed above is determined 

uniquely iff cof ( l l )=  No and uniquely up to isomorphism iff cof(fl)---No or 

coi(a) = No for each a E l'l. However, the structure of the set (T*, _-< ) is always 

independent of the choices which were possible in Construction 2.16. This 

follows immediately from Theorem 2.9, but for the sake of completeness it 

seems appropriate to include a sketch of a direct proof (Remark 2.18 will not be 

needed later). Analogous remarks hold, of course, also for T~(ll). 

REMARK 2.18. Let Tk = Tr.k(ll) (k = 1,2) be two "right" trees of fl  con- 

structed according to the requirements in (2.16). Then (T*, _-< )~-(T*, -<_ ). 

PROOF (sketch). For k = 1, 2, let Ik be the index set corresponding to Tk, and 

for any O / A C_ Tk, let M~ be the set of all minimal strict upper bounds of A in 

T~. We define a set Wk _C Tk by transfinite induction. Put Wk.o = {~}. If i ~ Ik and 

Wk.~ _C T~.~ is already defined, let 

Vk.,+, = (.J{M~aNM~[a~Wk.,NZ,.,NZ2,~} and Wk,,+,=Wk.,£JVk,,+,. 

If i E L (Ik) and W~,j C Tkj are already defined for each j < i, let 

V~.~= (_J{M~[PC_ [.J "Tk,j path with P _C [_J W~.s } and Wk.~ = [.J W~.jt] V~.~. 
j<i j<i j<i 
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We put W~ = U j ~  wk.j. Then VLi+I = V2.~+1 for each i C Ik, WIn T;  = 
W2 n T-(, and Wk satisfies conditions (2.2)(i)-(iii) for Tk, hence W~ C B(Tk) n 

T2 (k = 1,2). We define a bijection jr: W~--* W2 by putting a r = b whenever 

either a = b C W, n W2 or a C W, n Mid(T,), b C W2 N Mid(T2) satisfy {x C 

T~ Ix <T, a} ={x C T2I x <T~ b}. Then the map F:  T*---~ T*2, defined by [A] ~ = 

[B] whenever (A N Wz) t = B n w2 for A C T~, B C T~, establishes the re- 

quired isomorphism. 

It remains to prove Theorem 2.9 and Theorem 2.11. This will be done in §3 

and §4, respectively. We remark that we keep the notation developed in this 

section for the rest of the paper. 

§3. Analysis of N~(A ([l)) 

This section is mainly devoted to the proof of Theorem 2.9. However, we will 

also obtain some further structure results on N~(A (II)) for doubly homogeneous 

chains I). For the convenience of the reader, we first summarize some back- 

ground results developed in [5; §6] (cf. also [2]) which we will need here. 

Let fl be a dense unbounded chain. For any set O ~ A C_ ~ we NOTATION. 

put 

lim(A) = {a cf i  u{ooII a = sup{x C A  Ix <a},  

lim(A) = {a cfiu{-ooIla  = inf{x C A  la <x}, 
<..... 

lim(A) = li__.m (A) U lim (a ) ,  
<_._ 

and we call A closed upwards (downwards) itt li__,m(A)C A (lim(A)_C A), and 
<._. 

closed (or closed in 1~) iff l im(A)C A. Now we have 

PROPOSITION 3.1 [5]. Let ~ be a dense unbounded chain. 

(a) Let Ai C_~ (i E I) be closed upwards and A = A,~IA,. Then: 

(1) A is closed upwards. 
(2) If  I is countable and a E ~ U {~} satisfies cof (a )~  No and a E lira(A,) 

for each i C I, then a Climm(A ). 
(b) Let cof(lq)~ No and B C_ f~ be unbounded above and well-ordered. Then 

A = lira(B) n ~ C_ B is closed in ~, unbounded above, and well-ordered with 

cof(a) = No for each a E A \lim(A). 

NOTATION. Let again f~ be a dense unbounded chain. Each a C A(I~) 

extends naturally to an isomorphism of ~ which we will also denote by a ;  let 
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F ( a ) = { x E ~ [ x " = x } ,  the fixed point set of a. We put F(I~)= 
{F(a) ] a E A (1~)}. Then we have 

R (f~) = {a E A (~) } ~ \F(a )  is bounded below in 1~} 
and 

L(~) = {a C A (l~) l ~\F(a) is bounded above in 1~}, 

thus each cz C R(~) (a C L(f~)) lives "on the right" ("left") in ~, respectively. 
We let id denote the identity map of ~. 

PROPOSITION 3.2 [5]. Let ~ be a doubly homogeneous chain. Then: 
(a) ~ is dense and unbounded. Moreover, the sets {x C ~ [ c o f ( x ) =  1,lo} and 

{x C (l { coi (x) = No} are dense in ~. 
(b) For any set A C_ (l the following are equivalent: 

(1) A CF(f~); 
(2) ~\A is a disjoint union of open intervals each with countable 

coterminality ; 
(3)-o%ooCA, A is closed, and whenever a C A  and cof(a)#No 

(coi(a) # No), then a C li__,m(A) (a C li<__m (A )), respectively. 
(c) F(Y~) is closed under countable intersections. 
(d) If a C A (fl)\{id}, there are a l C L 0q)\{id}, a2 C R 0q)\{id} with a = o~ 1 • o~ 2 

and (a) = (a 0 • (a2). 
(e) (N~(A (•)), C_ ) ~ (Nt(L (fl)), C_ ) x (N,(R (a)), C ). 

Here (c) follows immediately from (b) and (3.1)0), and the proof of (e) is 
straightforward by using (d), which is well-known, the distributivity of N(A (f~)), 
and (2.13). 

NOTATION. For any set A C_~ we put 

S(A)={a C A  [Vb, c Cf i :b  <a ~ [b,a]e" A,a <c ~ [a,c]~ A}, 

R (A)={a  C A  I V b C ~ ' b  <a ~ [ b , a ] ~ A ; 3 c C f i : a  <c,[a,c]C_A}, 

L(A)={a  C A  [3bCO,:b<a,[b,a]C_A;VcCfi :a  <c ~ [a,c]~.A}, 

I(A) ={a C A  13b, c Cf i :b  < a < c,[b,c]C_A}; 

then A = S ( A ) U R ( A ) U L ( A ) ( J I ( A ) .  If A = F ( a )  with o~ CA(~) ,  we also 
write S (a )=  S(A), R ( a ) = R ( A ) ,  L (a )=L(A) ,  I (a )=I(A) .  For a C A(I'~) 
we always have - ~ C R ( a ) U S ( a )  and ooCL(a)US(a),  and, moreover, 
a ~L(I) )  (a C R(fl), a CB(~) ,  a =id) iff ~ C L ( a )  ( -ooCR(a) ,  ooCL(a) 
and - oo C R(a),  F(a) = ~), respectively. 
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PROPOSITION 3.3 [5]. Let ~ be a dense unbounded chain and ol E A (~). Then 

R (a) U S (a) is closed upwards. If  a E R (a) U S (a), a ~ - 0% and col (a) ~ ~0, 
then a E l im(R(a)U S(a)). The symmetric assertions hold for L(o~)U S(a). 

The following theorem characterizes the structure of (Nz(A (l))), _C ) by that of 
(fi,=<). 

THEOREM 3.4 ([5; Satz 6.18]). Let f~ be a doubly homogeneous chain and 

a, [3 E A (f~). The following are equivalent: 

(1) (a) c_ (/3). 

(2) There exists F E F(~) such that the following two conditions are satisfied : 

(i) S(a) n F C_ S([3); 
(ii) whenever a, b E F satisfy a < b and [a, b] C_ F([3), then [a, b] C_ F(a ). 

Here it was an open question in [5; p. 124] whether undei the additional 
assumption that/3 ~ id the above theorem can be simplified by leaving condition 
(2ii) out. We will obtain a negative answer to this problem (see Corollary 3.16). 

For the rest of this section let I)'always be a doubly homogeneous chain and 
the trees T,(I~), T~(I)) constructed according to (2.16). We now start our 
examination of the structure of (N~(A(I))), C_ ). 

NOTATION 3.5. For T = T,(f~) or T = T~(~) and A C_ ~, let 

AT = ( ( T -  n S(A)) U {a ~ Mid(T)I as, a3 EA,[a~, a3]~ A}) 

O{a E TI{x  E T I x  <Ta}C_S(A)}. 

We also write A, = AT,, A~ = AT,. 

Our first goal is to prove the following structure theorem which establishes a 
relation between the structures of (NI(A(fl)), C) and (T*, =<), (T*,-<) where 
T, = T,(n), T, = T,(n). 

THEOREM 3.6. Let l-I be a doubly homogeneous chain and T~ = Tt(l-l), 

T, = Tr(f~). Then for a,/3 E A (l))\{id} the following are equivalent: 

(1) (~) C (/3). 
(2) There are A EB(Tt) ,  B EB(T , )  such that (F(a))~ A A  C(F(/3))~ and 

(F(a))r n B C_ (F(/3))r. 

For the proof of this theorem we need some auxiliary results to which we now 
turn. 

LEMMA 3.7. Let T = T,(O), I = L or T = Tt(Iq), I = L. Assume that A C_ T~ 

satisfies 
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(i) conditions (i), (ii) of Definition 2.2; 

(ii) T- n Me C_ A for any path P C_ Uj<, Tj (i E L(I)) with P C_ A. 

Then A is closed in ~. Hence, in particular, T -  is closed in ~). 

PROOF. Let ~ ~ B C_ A and a E ~ with a = sup B ~ B. We claim a E A. For 

each x E B  let Bx ={y E B  Ix _<y}. If the following condition 

( + )  There exist elements i E l ,  b EZ~, v E B  such that Bo _C Vb and for all 

x E B v  there are yEMb,  z E B  withx=<y < z  

holds, then for all x, y, z as in ( + )  by (i) there is y' E Mb with y <= y' and y' _<- Tz, 

hence x = y ' E  A n Mb, showing a E li___>rn(A O Mb) _C A. 

Now assume ( + )  is not satisfied. If i E L b E Zi, v E B and By C_ %, let 

x EBo\Mb such that [x , z ]nMb = O  for all z EBx. Since min(Mb)<x < b  

(b < x) if b' < b (b < b'), there exists m = sup{y E Mb I Y < x} E Mb and m < x. 

If Mb is inversely well-ordered, then m ~ li__m(Mb) and m < x < max(Mb). Thus, 

if m + = min{y E Mb I m < y}, we have Bx C (m, m+). Thus B~ _C V,, (Bx _C Vm*) 

if b' < b (b < b'). This shows that by transfinite induction we can find a path 

P c U j < , T j  ( i E L ( I ) )  with P_CB_cUj<iTj.  Hence a = s u p P  and a =  

a e E M e n T - b y a ~ B .  Thus a E A  by(ii). 
A symmetry-argument shows that A is closed in ~. 

The following remark will be used quite often. 

REMARK 3.8. Let a EA(f~) ,  T=T,(I~)  and a ET .  Assume that X =  

{x E T Ix <Ta} is non-empty, contains no maximal element, and satisfies 

X C S(a). Then min(Mx) E R(a )  U S(a)  and max(Mx) E L(a)  U S(a). In 
particular, a~ E R(a)  U S(a)  and a3 E L(a)  U S(a)  if a E Mid(T). 

PROOF. According to our Construction 2.16, we have min(Mx)E li__m(X)_C 

li_,m(S(a)) C_ R ( a ) U  S(a)  using (3.3). Similarly for max(Mx). The last assertion 
follows immediately from a~ = min(Mx), a3 = max(Mx) if a E Mid(T) as men- 

tioned in the remarks after Construction 2.16. 

LEMMA 3.9. Let F E F(I~) and U = F O TT. Then U, E B(T,). 

PROOF. Observe ~ E U C_ TT. We show that U, satisfies conditions (i)-(iii) of 

Definition 2.2. Here (i) is trivial. If a E U, with M, # 0 ,  then a E Z~ n F for 

some i E L and U, n Ma = F O Ma E Bo, hence (ii) holds. Now let a E T,, 

P = {x E T, I x <ra} C_ U, and P #  ~ contain no maximal element. Then either 

Me = {ae} or Mp = {ap, bp, ce} with a~ < be < Ce. Hence ae E lim(P) C_ lira(F) C 

F and ae E U,, since U = S(U). If IMe I -- 3, similarly Ce E U, and then bP E U, 
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since [a,, cp] ~Z U. Thus Me C_ U, in all cases which shows (iii). Hence Ur 

B ( Z ) .  

The following lemma is our main tool for establishing half of the equivalence 

stated in Theorem 3.6. 

LEMMA 3.10. Let 4, /3 E R(O)\{id}. I f  there exists a B E B ( T, ) with (F(a)) ,  n 
B C (F(/3)),, then a ~ (/3). 

PROOF. Let B E B(T,) satisfy (F(a))r f l B C_ (F(/3)), and w.l.o.g, also condi- 

tions (i)-(iii) of Definition 2.2. We will construct an F E F ( I ) )  satisfying 

conditions (2i, ii) of Theorem 3.4; then a E (13) by this theorem. 

We abbreviate (T, =<r) = (T,, _-<, ) and 1 = L. For each 

a S( )ns(/3)nBnz,, i I, 

let 

C. = M~ fl B (t (R (a )U  S(a)) M (R(fl) U S(/3)) 

and 

if a ' <  a, 

C o = M a M B M ( L ( a ) U S ( a ) ) N ( L ( ~ ) U S ( f i ) )  if a < a ' .  

a ~ S ( a ) M  S(/3) and B satisfies condition (2.2)(ii), Ca is closed and 

U Tj path with P C_ U Wj} and W~= U Wjl]V. 
]<i j<i j<i 

We establish several properties of W. 

If w E W, x E T -  and x < T w, then x E W A S ( a ) A S (fl ). 

If x ~ T - \ S ( a )  and x ' < x  ( x < x ' ) ,  then [ x ' , x ) f q W =  
((x, x'] n w = O). 

v,-- O(wnM iec_ 

We put W = Ui~, W~. 

Step 1. 
(i) 
(II) 

Since 

unbounded above (below) in Ma by (3.1)(a) and (3.3). Let Ua = (lim(fa))\{a} 
Ca. Then again Ua E Ba by (3.1)(b), and for later use note that if a ' <  a (a < a'), 
then for every w E U ,  U{a} with co f (w)¢No  (coi (a)¢No)  we have w E  
li___)m(Ua) (W Eli(__m(Ua) ). 

Now we define a set W C_ T-  by transfinite induction. Let Wo = {oo}. If V¢~ _C T~ 

is already defined for some i E I, let 

V~+I = O { U a l a ~ W ~ f q Z i A S ( a ) A S ( / 3 ) }  and W~+I=W~OV~+,C_T~+,. 

If i E L (I) and VCj _C Tj are already defined for j < i, let 
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This follows immediately from (I), since (e.g.) any w E [x', x ) n  W satisfies 

X ~TW. 

(III) W is closed in ~.  

We apply Lemma 3.7. If a E WNZi  N S ( a ) A S ( / 3 )  for some i E L  then 

U, E Ba, hence (3.7)(i) holds. If P C Ui<, Tj (i E L(I)) is a path with P _C W, 

then P C_ U~<i W~ and T-  O Mp C W~ C W, which shows (3.7)(ii). 

(IV) W C_ B N ( R ( a )  U L(a) U S(a)). Moreover, if w E W N S(a), then w E 

S(/3), and if w E W N R ( a ) ( w  E W N L(a) ) ,  then w < w'(w'< w)and  

w E R(/3) U S(/3) (w E L(/~) U S(/3)). 

Let w E W .  If wEU~ for some aEW~NZ~NS(a )NS(~ ) ,  i E L  then 

w E B n (R(a) U L(a) U S(a)) by definition; moreover, if w E R ( a ) ,  we get 

a ' <  a, hence w < w', and w E R(/3) U S(/3). Now let w E T-  n Mp for some 

path e C Uj<~ Tj+, (i E L(I)) with P C_ Ui<~ wj+~. Then P C B, hence w E B, 

since B satisfies conditions (2.2)(i, iii). Also P C_ {x E T lx < r w }  c_ S ( a ) O  S(/3) 

by (I). Hence either w = min(Mp) E (R(a) U S(a)) N (R(~) U S(~)) or w = 

max(Mp) E ( L ( a )  U S(a ) )  O (L(/3) U S(/3)) by (3.8). Consequently, w E R (a)  

now implies w E R ( / 3 ) U S ( / 3 )  and w Elim(P)<li ._m(P),  hence w < w' by 

Construction 2.16. Similarly for w E W n L(a ) .  If w ~ W N  S(a), then 

{x E T Ix  <raIC_S(a)NS(~)by  (I) and w E B  N T-  as previously shown, 

hence w ~ (F(a)) ,  n B C (F(/3)), and thus w E S(/3). 

(V) Let w E W  and c o f ( w ) ~ o  (coi(w)~No).  If w ~ R ( a ) O S ( a )  
(w E L(a) U S(a)), then w E l im(W) (w U li,_m(W)). ---). 

W.l.o.g. assume cof(w) ~ No and w U R ( a )  U S(a). If w ' <  w, then w E R(a) 
by (IV), hence (using (IV) again) w E S ( a ) N  w n Z, c_ S(/3) for some i E I, 

thus UwC_W and wEli_>m(U~). Now assume w-<_w'. If w E U o  for some 
a @ W n Z~ n S(a) O S(~), then a '  < a, a E B by (IV), and again w E l im(U,)  

as previously mentioned. Finally, let w E T-  N M~ for some path P C_ U j<, Tj 

(i E L(I)) with P C_ W. Now w < w' implies w = ap E l im(P) C lim(W). Hence 

w ~ lim (W) in all eases. 

Step 2. Definition of F E F(f~). 

According to (IV) and (3.2)(a), for each w E W n ( R ( a )  U L(a)) we can now 

choose an element ff E ~ satisfying 

(a) w < ~ < w', [w, ff,]C_F(a), and coi(f f )=l~o,  if w E R(a), 
(b) w ' <  ff < w, [if, w]C_F(a), and cof(ff)  = ~o, if w E L ( a ) ,  

(c) [ - = , f f ] ~ F ( / 3 ) i f  w = ~ L ( a ) ;  

moreover, if w, E W n R ( a ) ,  w2 E W n L(a) (hence w~, w2 E F(/3) by (IV)), 

and w~ = az < c~ = w: for some path P C_ Uj<~T~ (i ~L(I))  with P C W, the 
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choice of ~1, ~2 can be done such that, in addition to the other properties, also 

[~1, ff2] tZ F(/3) holds if [w,, wz] ~ F(a).  

Also, let z EI~ satisfy z <oo', [-~,z]C_F(a)nF(fl),  and coi(z) = 1%. Now 

let 

F = [ - ~ , z l U W U  U [ w , ~ l u  U [~,w]. 
wEWNR(a)  wEWNL(cQ 

We claim that F is closed in ~. Assume X C_ F and x = sup X ~  X; we want to 

show x EF.  W.l.o.g. let x n [ - ~ , z ] = O .  In case there are wE WNR(o~) 

(w E W A  L(~)), a E X  such that b E(w, w') (b E(w', w)) for all b E X  with 

a<-_b, then Wn(w,w')=f~ (Wn(w' ,w)=(~)  by (II), hence bE[w,~] 
(b ~[~,,w]) for all b E X  with a _-<b, thus x ~ F ;  otherwise for each b E X  
there is an element w E W with b < w < x, and so we obtain a set Y _C W with 

x ~ Y and x -- sup Y, thus x E W C_ F by (III). Hence, by a symmetry-argument, 

F is closed. 

According to our construction and to (V), we furthermore have a E li__m (F) 

(a ~ li_m (F)) for each a E F with col (a) ~ Xo (col (a) ~ No). Since - 0% ~ E F, we 

conclude F E F(~)  by (3.2)(b). 

Step 3. We claim that F satisfies conditions (2i, ii) of Theorem 3.4. 

First we obtain S ( a ) n  F = S(a , )n  WC_ S(/3) by (IV), as claimed. Now let 

x, y E F  with x < y  and [x,y]C_F([3). We will show [x,y]C_F(a).  If 

x , y ~ [ - ~ , z ] ,  we immediately get [x,y]C_F(a). On the other hand, the 
assumption x _-< z < y leads to a contradiction in all cases: If oo ~ L(a), we have 

z <oo'<~__< y, [-oo, z]C_F([3) and thus [z,~]~F(fl) by (c); if oo~S(a) and 

cof(fl) = ~o, we obtain W = {oo}, F = [ -  ~, z] U {~}, y = ~ ~ S(a) n F c_ S(fl), 
hence [x,y]~F(fl); if oo~S(ot) and cof(fl)f i~o,  we have z < m =  
.min(U~)ER(fl)US(fl), thus [z,m]~F(fl), m<-y and hence again 

[x, y] ~ F(fl). 

Therefore we can now assume x, y ~ [ - ~ ,  z] and, furthermore, x, y ~ W N 

S(a),  since WNS(a)C_S(~). Thus by (IV) there are wz,w2EWN 
(R(a) U L(a)) such that x E W~, y E W2 if we put W~ = [w~, ~ ]  (W~ = [~ ,  w~]) 

if w, E R ( ~ )  (w, EL(o~)), for i - -1 ,2 .  By (II), we obtain either W~ = Wz or 

W~ N Wz = ~.  If W~ = '412, immediately [x, y] C_ W~ C_ F(a) by construction. So 

now let us assume W~ ~ W2. 

Since W~ n W2 = ~ and x < y, we have W~ < W2. In particular, this shows 

[max{w~, ~},  min{w2, k2}] _C F(fl). This yields a contradiction if max{w~, ~}  = 

w~, since then w ~ W N L ( a ) C _ L ( f l ) U S ( f l ) b y  (IV). Hence w ~ < ~ ,  

w~ ~ R(a), and similarly ~2< w:, w2 ~ L(a). 
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Assume we had wa ~ Ua for some a ~ W n Z~ N S ( a )  n s(/3), i E L Then 

a ' < a  by waER(a) ,  thus Ma and Ua are well-ordered. Let w =  

min{y E Ua I Wa < y}, then wa < ~a < wl < w < w2. But w ~ [w~', w2) by (II), so 

w < w~ < ~2 < w2 and [~i ,  w] _C [x, y] C_ F(fl). This contradicts w C U~ C_ 
R(/3) u S(/3). 

This and a symmetrical argument shows that wi E T-  n Me, for some paths 

P, C Ui<~, Ti (ki ~. L(I)) with P~ C_ W, i = 1,2. Since wl < #a < w(,  w~< w2, we 

get [Me, ( = 3  (i = 1,2) and w~ = ae,, w2 = cP2. We put a~ = av,, q = ce, (i = 1,2) 

for abbreviation. Hence x E WiC_[a~,q] and y ~ W2C [a2,cz]. We claim 

Me, -- Me . 
Assume Mr, # Me~. Since w~ ~_ S(a), T-  N Me, C W (i = 1,2), we do not have 

c2<raa or al <rc2 by (I). Next observe that each x ~ T-  with x <rq  satisfies 

x < a~ = Wl, hence x ~ S(/3) by (I). Consequently ca = max(Me,) E L(/3) U S(/3) 

by (3.8); similarly a2 ~ R(/3)tO S(/3). Now we distinguish between four cases. 

Case 1. Assume aI<a2. Then [x, a2]C_[x,y]CF([3) contradicting 

a2 E R(fl) U S([3). 
Case 2. Let aEE(al,aI). Then aa<r{a2, c2}, a contradiction as already 

mentioned. 

Case 3. Let a2 < aa and c2 < a~. This contradicts x < y. 

Case 4. Assume a2 < a~ < c~ < c2. Then c~' < a~ implies c2 < r a a ,  a contradic- 

tion. Consequently al < c, < c~' = w~ < y. But now [ca, y] _C [x, y] _C F(fl), a final 

contradiction to ca E L ( 3 )  U S(/3). 

Thus Me~ = Me2, wa = a~ = a2, w2 = c2 = ca. Since [ff~, ff2] C_ [x, y] C_ F(/3), 

from our construction of F it now follows that [wa,w2]CF([3), thus 

bP~ ~: (F(fl)),. But wa, w2 E W C F ( a )  n B, so bv~ ~ B since B satisfies condi- 

tions (2.2)(i, iii). Hence b~ ~ (F(a)) , .  Since {z ~ T Iz <rwa}C_ S(a) by (I), we 
obtain [x, y] C_ [a~, ca] C F(a ) .  Hence [x, y] C_ F ( a )  in all cases, and (3.4)(2) is 

proved. 

Now we can come to the 

P~oov ov THEOREM 3.6. (1)-->(2). According to Theorem 3.4, there exists 

F ~ F(f l )  satisfying conditions (2i, ii) of (3.4). Let A = (F(/3) n F n T?)~, B = 

(F(~) N F n TT),. By Lemma 3.9 we have B ~ B(T,).  We claim (F(a)), O B C_ 
(F(/3)),. Let a ~ (F(a) ) ,  n B. Then {x E T, Ix < , a}  _C S ( a )  n F C_ S(/3) by con- 

dition (2i) of (3.4). If a ~ T-l, then a ~ S(a)N F C_ S([3). If a ~ Mid(T,),  then 

aa, a~ E F(a) n (F([3) O F) and [al,  a3] e' F (a ) ,  hence [a~, a3] ~ F(fl) by condi- 

tion (2ii) of (3.4), thus a G(F(fl)),. This shows the assertion for B. By a 

symmetrical argument, it follows also for A. 
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(2)--~ (1). By (3.2)(d), there are a~,/3~ (~ L(fl)\{id}, a2,/32 E R(~)\{id} with 

C[ = O~ 1 " C[2, • = i l l "  f12, (C[) = (OIl)" (•2), ( • )  = ( i l l ) "  (f12). W e  claim (ai) C_ (fli) for 
i = 1, 2. If cof(f/)  ~ No (cof(f/) = Xo), let y E f / a n d  z E M~ (z E f/) satisfy y < z 

and x ~ = x  ~2, x ~ = x  ~2 for all x E •  with y _-<x. Let C = [z, oo] n T,. Obviously, 

C E B(T,)  and (F(a))r n C = (F(a2)), n C, (F(fl)), n C = (F(fl2)), n C. Thus 

(F(a2)), n B n C c (F(fl2)), by (2), hence (a2) C (f12) by Lemma 3.10. By sym- 

metry, we obtain (al)_C (ill). Hence ( a ) C  (fl) as claimed. 

Next we want to use Theorem 3.6 to establish an isomorphism from 

(N~(A (f~)), C_ ) onto ( r~ ,  _-< ) × (r*,, < ), where Tt = Z(fl) ,  Z = Z ( f l )  as usual. 

For this we will now derive in (3.11)-(3.15) some properties of sets A C_ fi  which 

are of the form A = (F(a)), for some a E A(fl) .  First we show: 

LEMMA 3.11. Let r = T,(fl). Then (F(a)) ,  ~ r + for any a E A ( ~ ) .  

PROOF. Let a ~ A ( f l )  and A = ( F ( a ) ) , .  Condition (2.3)(i) holds trivially. 

Now let a ~ T such that X = {x E T I x <Ta} contains no maximal element. If 

a ~ M i d ( T )  and A n { a l , a 3 } ~ O ,  then XC_S(a)  and a~,aaEF(a)  by (3.8). 

Since al ~ S ( a )  or a3E S(a) ,  we have [a~, a 3 ] ~ F ( a ) ,  in total a E A. This 

shows (2.3)(ii). If, on the other hand, M x = { a }  and X C_A, then 

a ~ ( R ( a )  U S(a ) )  n (L(~t) O S(a ) )  = S ( a )  by (3.8), hence a E A, and thus 

(2.3) (iii) holds. 

Next we want to prove the converse to (3.11), namely that each set A E T + 
(where T = T,(fl)) is of the form A = (F(a)) ,  for some a E R(tl) .  Here we use a 

result from [5] which characterizes all sets A C_C_ ~ of the form A = S ( a )  for some 

a E A (12). 

DEFINITION 3.12 [5; Definition 7.1]. A set A C_ ~ is closed to the interior in 

if it satisfies the following conditions: 
(i) If oo ~ l i_~ (A)  ( - oo ~ li<m (A)), then oo ~ A ( - oo E A ). 

(ii) If x ~ t ~  and x~li_m(A)nli_m(A), then x E A .  

LEMMA 3.13 [5; Lemma 7.3]. (a) Ira  ~A(12),  then I (S(a )) = 0 and S(a ) is 

closed to the interior in ~. 
(b) Let A C_ ~ be closed to the interior in ~ and I (A  ) = gD. Then there exists an 

a EA(fl) \{id} with S ( a ) = A  such that [a, b l tZF(a )  whenever a , b ~ F ( a ) ,  

a < b, and [a, b] is a maximal interval in ~ with [a, b] n S(a)  = 0 .  

LEMMA 3.14. Let T = T,(~) and A E T +. Then A n T -  is closed to the 

interior in 1~. 
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PROOF. Let A E T  ÷ and A ~ = A N T - .  Obviously, - o o ~ l i m ( A - ) .  If (-.--_ 
ooElim(A-),  then cof(II)¢No, oO<=TA- and ooEA~. Now let x E l i  satisfy 

x E li._,m ( a  -) n li,_.m ( a  -). Then x ~ T-,  since T~ is closed in ~ by Lemma 3.7. If 

x / x '  and w.l.o.g, x' <.x, there exists y E A ~ with x' < y < x, hence x <Ty and 

x E A ~. Now assume x = x'. Let y E T with y <rx and w.l.o.g, y < x. There 

is an a E A -  with y < a < x ,  hence y<Ta and y E A .  This shows 
{y E T l Y < r x } C _ A .  Since A E T +, we obtain x E A - .  

The following lemma contains the announced converse to Lemma 3.11: 

LEMMA 3.15. Let T = T,(O) and A E T +. Then there is an a E R(O)\{id} with 
(F(a)), = A and S(ot)= A n T- .  

PROOF. Step 1. Construction of a E R (II). 

According to Lemma 3.14, A -  = A n T- is closed to the interior in ~. Since 

I ( A - )  = I ( T ) =  O, by Lemma 3.13(b) there is an element/3 E A(O)\{id} with 

S(/3) = A -  such that [a, b] ~' F(/3) whenever a, b E F(/3), a < b, and [a, b] is a 

maximal interval with [a, b] O S(/3) = O. Since - oo ~ S(/3), we have/3 E R([I). 

Let 

Z ={a EMid(T)I  a f f .A,{x E TI  x <Ta}C_A-}. 

If a E Z, then a~ E R(f l )  U S(/3) by (3.8) and al i~ S(/3), since otherwise we had 

a~ ~ A and a E A by A E T +, a contradiction. Thus a E Z. implies a~ E R(/3) 

and, by symmetry, a3 ~ L(/3). Now put B = F(/3) U U~z[a~ ,  a3]. Since 
al ,  a3 E F(/3) for each a E Z, we get obviously B E F(I)). Let c~ U R(II) satisfy 
F(c~) = B. 

Step 2. We show S(a)  = S(/3). 

Clearly, S ( a ) C  S(/3). Let a E S(/3)= A n T-.  Then a ~ F(a);  it suffices to 
show that a ~ R (a )  U S(a), since then also a E L(a )  U S(a)  by symmetry, 

hence a ~ S(a). So let x E ~ with x < a; we claim [x, a)~_ F(a). We first note 

(*) If x =<y < z - < a ,  z ~ A -  and ( y , z ) O A - = O ,  then [x ,a)e 'F(a) .  

PROOF OF (*). For any b E Z we have b3 E li(.__m (A -), hence b3 t~ (y, z), and 

z ~ [bl, b3] by A ~ T + and bl, b3 I~ A. Thus (y, z) n Ub~z[b~, b3] = O. Hence 

[x, a)~'  F(o~), since otherwise (y, z)C_ F(ot) and (y, z)C_ F(/3), a contradiction to 
z E S(/3). This proves (*). 

We now show [x, a) ~ F(a). Because of (*), we can assume a E lim(A-). We 

distinguish between two cases. 
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Case I. Assume either ( + )  a < a '  and aEMb for some b U T - ,  
or (+  + )  a ' < a .  

If ( + )  holds, we have a E li__m(Mb) since otherwise there is an element 

d ~ Mb 13 {b} with d' < a and [d', a) n T = O, a contradiction to a ~ li...m (A-)  C 

lim(T-). Also a El im(M,)  in case of (+  +). Hence, for c = b  or c=a ,  
.....) .....) 
respectively, we have a U lim (M~) and y < y' for each y E M,. Choose y ~ M, 

with x < y < a .  Since a~li._,m(A-) and A E T  +, we get D =  

Me O ( y ' , a ) n  A - ~ .  Let z =minD.  Then z ~ A ~  and ( y ' , z ) O A - = ~  by 

A ~ T + and minimality of z. Now (*) yields [x, a ) ~  F(o 0. 

Case II. Assume a -< a' and a ~ M~ for some path P C_ U~<~ T~ (i ~ L(L)). 
Thus a = ap = min(Mp) and X = {x ~ T [ x < ra}  C_ S(/3) by A ~ T +. But 

then Y = X N U~-<, Ti+t C S(/3) satisfies Y C_ R(a)  U S(a) by Case I. Conse- 

quently, a ~ li_..m(Y) C_ li.._m(R (a)  U S(a)) C_ R(a) U S(a)  by (3.3) which proves 

our claim. 

Step 3. We show a ~ R(fl)\{id} and (F(a)), = A. 
If ooES(/3), then oo~S(a) by Step 2, and a ~ i d .  But if ~ ~.S(fl), then 

A - = O ,  Z = O  and F ( a ) = B = F ( / 3 )  and again a ~ i d  by /3~id. Thus 

a E R(12)\{id}. If a ~ (F(a)), O r -  or a E A n r - ,  then {x E r I x <Ta} C_ 

S(a) = S(/3). This shows A O T-  = S(/3) = S(a) = (F(a)), O T-, and it remains 

to prove that A N Mid(T) = (F(a)), n Mid(T). 
So let a EMid(T)  and X = { x E  TIx<ra}C_T- .  We have to show that 

a E (F(a)), iff a E A. First note that if X C_ A, by X C_ S(/3) = S(a) and (3.8) we 

obtain a~, a3 E F(a) N F(/3). 
Now if a E (F(a)),, we have X C S(a) n T- = S(/3) = A ~, al, a3 E F(a) and 

[al, a3] IZ F ( a ) =  B. This shows a 1~ Z by definition of B, thus a E A. 

Conversely, assume a E A which implies X C A  by A ~ T + and thus 

al, a3 ~ F(a) O F(/3) as mentioned before. We claim [at, a3] ~ F(o 0. If 

[at, a3] n S(/3) # 0 ,  we use A ~ T + to obtain {at, a3} n s(/3) # 0 ,  hence a~ 
S(a)  or a3 ~ S(a), thus [ax, a3] g~ F(a).  Now assume [al, a3] O S(/3)= ~.  This 

shows that if b E Z, then b~, b3 ~ (al, a3); furthermore, b # a since a E A, thus 

bt,b3~[a~,a3]; also a~[bl,b3] since a ~ A ,  b~,b3~A. Thus [bt,b3]n 

[at, a3] = O for any b ~ Z. Hence [a~, a3] C_ F(a) = B would imply [at, a3] C_ 

F(/3). But by XC_A we have a~ Eli  m(S(/3)), a3Eli<_m(S(/3)), so [at,a3] is a 

maximal interval with [at, a3] n s ( f l )  = Q~. By our initial assumption on/3, this 

implies [at, a3] G,' F(/3). Therefore [al, a3] ~' F(a) also in this case, which shows 

a ~ (F(o0),. 

Now we are able to give the 
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PROOF OF THEOREM 2.9. Because of (3.2)(e) and a symmetry-argument,  it 

suffices to show (NI(R([I)), C_ ) ~ (T*, _-< ). Define ~b : N~(R (fl))--> T* by (a)* = 

[(F(a))r],  if a E R(tl)\{id}. The fact that ~b is well-defined, surjective, and an 

order-isomorphism follows from Lemma 3.11, Lemma 3.15, and Theorem 3.6 

(cf. Lemma 3.10). 

As an application of Theorem 3.6, we will now answer a question in [5; p. 124] 

whether in (3.4) ((1) ¢:> (2)) condition (2ii) is really necessary. The answer will be 

positive. 

COROLLARY 3.16. Let 1) be a doubly homogeneous chain and T~ = Tt(l)), 

T, = Tr([l). Then the following are equivalent: 
(1) Whenever a, [3 ~ A (l'l)\{id}, the existence of an F E F(II) with S(a ) O F C_ 

S(/3) implies a E (/3). 

(2) Whenever T = T~, I = I~, or T = T,, I = L, then either I II < ~o or to ~ I and 

T,~ O Mid (T) n B = O for some B ~ B (T). 

(3) There are A E B ( T ~ ) ,  B E B ( T , )  such that M i d ( Z ) O A = ~  and 

Mid ( Z )  n B = ~ .  

PROOF. (1)--*(2). W.l.o.g. assume T =  Z ,  I = L ,  to ~ I .  Let 

A = T~, \{al, a3 [a E To n Mid(T)} and B = To \{a, a l, a3 [a ~ T,o n Mid(T)}. 

Then A, B E T  +, hence by Lemma 3.15 there are a , /3ER(t l ) \{ id} with 

(F(a)) ,  = A, S (a )=  A n T-,  (F(/3))r = B, and S(/3)= B n T-.  Thus S(a)= 

S(/3), and now (1) implies a 6 (/3). By Theorem 3.6, there exists C E B(T)  with 

A n C c_ B. This implies 

To n Mid (T) n C = A n T,o n Mid (T) n C c_ B n T~ n Mid (T) = O. 

(2)--> (3). We prove the assertion for T = T,, I = L. W.l.o.g. assume to E I and 
that B 6 B ( T )  as in (2) satisfies conditions (2.2)(i)-(iii). Put C =  

(To\Mid(T)) n B. We claim that C also satisfies (2.2)(i)-(iii). Here (i) is trivial. If 
x E C n (T,o\Uj<,o Ti), there is a path P C_ U~<,~ Tj with x 6 Mp, hence Me C_ 

B n T,o and [M~,[ = 1 by (2). But since Mp = {x}C_ T, we have cot(x) = No, hence 

x~Zo , .  This shows (ii): If a 6 C A Z  for i ~ / ,  then i <  to and Ma n C = 

M a n  B ~ B~. Now (iii) is straight-forward. Thus C E B(T)  and Mid(T)  n C = 
O. 

(3)--~ (1). Let A E B(Tt), B E B(T,)  as in (3), a,/3 E A (l))/{id}, and F 6 F(II) 

with S(a)NFC_S(/3).  Put C = ( F A T - i ) ~ N A ,  D = ( F N T T ) , N B .  Then 
C ~ B(T~), D E B(T,)  by Lemma 3.9. Furthermore, we have (F(a)) ,  n T~- n 
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C C_ (F(/3)), and (F(a)), N Mid(Tt) A C = O, hence (F(a)), (q C C_ (F(/3)), and, 

symmetrically, (F(a))r N D C_ (F(fl)),. Now a E (/3) by Theorem 3.6. 

Now we want to use Corollary 3.16 to show that in general in Theorem 3.6 

condition (2ii) cannot be left out. For instance, it is easy to construct a tree 

(TR,----<R ) E  5rR such that all maximal linearly ordered subsets of (TR, <R ) are 

infinite and IMp I = 3 whenever P C_ TR is a countable chain not containing a 
maximal element. Then by Theorem 2.11 there exists a doubly homogeneous 

chain (I~, < )such that (T,(f~), < , ) =  (TR,----<R ). Hence condition (2), and thus 

also (1), of Corollary 3.16 is violated. We give a further example: 

EXAMPLE 3.17. Let a =1  be an ordinal and assume that (f/, < )  has 

cardinality N~ and is an r/o-set, i.e. a chain such that whenever A, B C_ 1) with 

A < B and I A I, I B I < N~, there exists z E f~ with A < z < B. In particular, ~ is 

doubly homogeneous (Chang and Keisler [4; Prop. 5.1.14]). Let T = T,(f/). 

Since cof(f/)#No and any a E f /  with cof (a )=~o  (coi(a)=~lo) satisfies 

co i ( a )#  ~Io (cof(a)~ No), we obtain to E L  and T~ N M i d ( T ) N B ~ O  for any 

B ~ B(T).  Hence condition (2) of Corollary 3.16 does not hold. 

§4. Constructing doubly homogeneous chains 

All of this section is devoted to proving Theorem 2.11. In our proof, we will 

construct the chain (fl, =< ) as the union of a "good A-system" of "good A-sets" 
(~i, = ). We will first define these notions and establish some properties of such 

sets. 

DEFINITION 4.1. Let A be a cardinal. A chain (M, =< ) is called a good A-set, if 

the following conditions are satisfied: 
(1) ]M I = A, and (M,= < ) is dense and unbounded; 

(2) co t ( a )=  N0 for each a G M; 
(3) for all elements x, y ~ M with x < y there exists a set A C_ [x, y ]~ \M such 

that IA[ = A and cot(a)=No for each a CA.  

Obviously, any good ~0-set is isomorphic to Q, the set of all rationals. Now we 

deaI with the existence problem of good A-sets for arbitrary cardinals A: 

LEMMA 4.2. Let A be a cardinal. Then there exists a good A-set (M, _-< ) of 

countable coterminality. 

PROOF. Let K be the set of all sequences ( a i ) ~  of to ordinals a~ satisfying 
1 < a~ < A which are eventually constant and even, i.e. there exists an i ~ to such 
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that for each j _-__ i, aj = a~ is an even ordinal. We define a linear order on K by 

ordering K lexicographically. Let L C_ K consist of all those sequences which are 

eventually equal to 2. First we show: 

( + )  For all a ~ K  there are yk, zk E L  such that yk < a < zk for each 

k E N and a = sup{yk ] k E N} = inf{zk I k ~ N} in K. 

Indeed, let a = (ai)~ E K. Fix j E to such that for each n => j, a, = as is an even 

ordinal. For each k EN,  define y~ = (y~)~, zk = (z~)~ E L such that yk, = zk, = a, 

if i < j + k, yk,j+~ = 1, Zk,~+~ = ai+~ + 1, y~ = z~ = 2 if i > j + k. This establishes 

(+) .  Next we show: 

(+  + )  Whenever x, y G L satisfy x < y, there exists a set A C_ Ix, y ]~ \L of 

cardinality h. 

Indeed, let x = (x,)~, y = (y~)i ~ L and let j = min{i ~ to [x~ < y~}. For each 

ordinal ~, with 1 _-< u < A, define an element a~ = (a.~)~ ~ K by putting a,~ = xi if 

i _-< j + 1, a.,,+~ = x~+~ + v, and a.,~ = 4 whenever i _-> j + 3. Then the set A = 

{a, [ 1 _-< v < h } satisfies the assertion of (+  + ). 

Now define a = (a~)~, b = (b~)~ E K by a~ = 2, b~ = 4 for each i G to, and put 

M = (a, b)~. Clearly [M[ = A, and ( + ) and ( + + ) immediately show that (M, _-< ) 

is a good A-set of countable coterminality. 

NOTATION 4.3. Let (Oi, < )  (i = 1,2) be dense unbounded chains such that 

(1),, < ) C (112, <- ) and fL is unbounded in f12. Suppose a E 1~2, A = {x E 1~, I x < 

a}, and B ={y E l L  [a < y}. If we have a = s u p A  = infB in fl2, and hence in 

particular A (B) is unbounded above (below), then we usually identify a with 

supc~, A = infi-~, B as elements of ~ , ;  thus a E ~, .  Now let a E ~ or a E ~2, and 

1)2 C Z C ~2. Then we put 

Ded(a,ll , ,Z)={z E Z  I{x E l ] ,  [x < a}<z <{y E f l ,  la  <y}}. 

A pair (A,B) of non-empty subsets A,B C_l]~ is called a jump of Ch if[ 

I ] , = A O B ,  A < B ,  and A (B) is unbounded above (below), i.e. iff A =  

{z E l-l, [ z < a}, B = {z ~ fl, [ a < z} for some a E l~l,\II,. A jump (A, B) of ~,  

is called empty in I12 iff there exists no xEf~2 with A < x < B ,  i.e. iff 

Ded(sup A, f~l, fl2) = O, and non-empty, if it is not empty. Let Jump([~,  [12) be 

the set of all jumps of [L which are non-empty in [12; there exists a (natural) 

bijeetion from Jump(O,,  112) onto {Ded(a,l 'L, f L ) [ a  ~ f12}. Note that we have 

Ded(a,  f l , , f~2)={a} for each a E l ) ,  iff for each z~l~2\fL the pair 

({x E~L ix < z},{y ~.~ ~, i z < y}) is a jump of 1),. As a further example to this 
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notation we remark that we have ~2Cfil iff Ded(a ,1) l ,Da)=  {a} for each 

a E 112. 

DEFINITION 4.4. Let (1)1, -< ), (lh, =< ) be dense unbounded chains. Then 1)t is 

a good subset of 1)2, i.e. f~l C_ 1)2 (good), if (1)~, =< ) C_ (1~2, =< ), 11~ is unbounded in 

1~2, and Ded(a,1) , , f l2)= {a} for each a E l ) , .  

Clearly, this relation is reflexive and antisymmetrical on the class of dense 

unbounded chains. In the next two lemmas we show that it is also transitive and 

has a closure property for unions of dense unbounded chains which are good 

subsets of each other. 

LEMMA 4.5. Let (f~, <= ), i = 1, 2, 3, be dense unbounded chains such that 

~ C_ 1~2 (good) and Da C_ ~3 (good). Then 1)~ C_ 1)3 (good) 

PROOF. Clearly, (1)1, =< ) C (fl3, _-< ) and f~l is unbounded in 113. Let a E 121. 

We claim that Ded(a,l)~,1)3)={a}. Let A = { x E l I ~ l x < a  } and B =  

{ y E f l ,  l a < y } .  By Ded(a, l)~, l)2)={a} we obtain that no z E~)2 satisfies 

A < z < a or a < z < B. Hence Ded(a, II~,fl3) = Ded(a,1)2,1)3) = {a}. 

NOTATION. If I is a set of ordinals and (A,, <~ ) (i E I) are chains such that 

(A~,_-<,)C(Aj,_-<j) whenever i< j ,  i , j ~ I ,  we put (A,_-<) = U,~,(A~,-<_,) iff 

A = U~IA~ and for all i ~ I ,  a,b ~ A i  we have a -<b iff a _-<ib. 

LEMMA 4.6. Let j be a limit-ordinal, (~,, <-_ ) (i < j) dense unbounded chains 
such that (~,, _-< ) C_ (1)k, --< ) whenever i < k < j, and (~, _-< ) = U,<s(l~,, _-< ). 
Suppose that for some i < j and a ~ ~, we have Ded(a,  ~,,  1)k) C_ {a} whenever 
i < k <j. Then: 

(a) Ded (a, 1), 1)) C_ {a }; 

(b) if A, B C_ l~i satisfy a = sup A = inf B in 1~,, then also a = sup A = inf B in 
~, and a E ~; 

(c) cof~(a) = cof~, (a), coi~(a) = coi~, (a). 

In particular, if [l~ c_ llk (good) whenever i < k < j, then [l~ C_ l-I (good) for any 

i<j .  

PROOF. Here (a) is clear by Ded(a,  l~, 1)) = Ui<k<jDed(a, ll~, 1)k) c_ {a}, (b) 

by (a), since no x E fl satisfies A < x < a or a < x < B, (c) immediately by (b), 

and the final statement by (a). 

Next we wish to find conditions for a chain of good A-sets ([~, < ), i < j, which 

are sufficient to imply that (1), _<-)= Ui<s(fl~,--<) is again a good A-set. 
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DEFINITION 4.7. Let h be a cardinal, (I~,, < ) good h-sets, and T~ C_ ~, \f~,, for 

i =  1,2. Then we call (I~, 7"1) a good subsystem of (fh, T2), i.e. (lq~, T1)C_ 
(D,2, T2) (good), if the following conditions are satisfied: 

(I) ~1 C_ 1-/2 (good), T~ _C T2, and (fl~ U T~, _-< ) _C (D~ UT2, _-< ). 
(1I) I Jump(II~, fh)] < h. 
(III) If a E T1, then Ded(a, fl~,f~2U T2)={a}. 
(IV) If a E T2\TI, then Ded(a ,~ l , lqz) f iO.  
(V) If a~fl2\f~l ,  A = { z ~ f l , [ z < a } ,  B = D e d ( a , l ~ , f l 2 ) ,  and C =  

{z E ~ l a  <z},  then 
(i) B is unbounded, 
(ii) col(A) = cot(B) = coi(C) = N0, 
(iii) there are x, y E/ '2  such that, in ~12, we have A < x < B < y < C 

(VI) Whenever i E {1,2} and x, y E ~i with x < y, there exists a set A C_ 
[x, Y]a,/(fL U T~) such that [ A I =  A and cot (a)= N0 for each a E A. 

Here, (III) says that if a E T~, then no b E ~2 td T2 with b~  a realizes the 
same Dedekind cut in fl~ as does a;  in this respect a can be thought of as a 
"forbidden point" of 1~\1~1. Condition (V) says that whenever (A, C) is a jump 
of 1~ and we obtain l h  by "inserting" (precisely defined later) a set B into 1~ 
between A and C, thus A < B < C in Da, then B is unbounded with countable 
coterminality, and the points of ~ z \ ~  corresponding to the jumps (A, B LI C), 
(A U/3, C) of D,z become forbidden points of ~-h\fh, i.e. elements of T~. 
Condition (IV) is sort of converse to (V). Note that by (IV) we have 

Jump ( ~ ,  f12) = Jump (ill, Da U (T~/T~)). Condition (VI) sharpens condition (3) 
of Definition 4.1. 

REMARK. In the situation of (4.7) and the notation of condition (V), we 
always have x = sup A = inf B and y = inf C = sup B in 0,2. 

PROOF. We only prove the first row of equations. First note that x E 
li__,m(Da) O li,_m(l~) by x ~ T2 C_ ~h. But any w E Oa with A < w satisfies either 
w E B or B < w, hence x < w by condition (V). Thus x E lim(lh) implies 
x = sup A. Similarly, x = inf B follows from x E lim (fh). 

<_- 

T h e  following lemmas (4.8) and (4.10) establish an analogue to (4.5) and (4.6) 
for the relation defined in (4.7). 

LEMMA 4.8. Let h be a cardinal, (~i, <) good h-sets and T~ C_~i\~, 
(i = 1, 2, 3). If (fh, TI) U_ (D~, T2) (good) and (D~, T2) C_ (fh, T3) (good), then 
(~'~1, TI) C (~3, T3) (good). 
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PROOF. We have 121 C_ 113 (good) by Lemma 4.5, so conditions (I), (VI) of (4.7) 

are satisfied. For condition (II), let (A, B)  be any non-empty jump of 111 in ~3. If 

there exists z E f~2 with A < z < B, then (A, B)  is a non-empty jump of 1)1 in 122. 

Otherwise, if no z E 122 satisfies A < z < B, let 

a*={x~11z[3a~l:x<=a} and B*={xEfh[3bE121:b<=x}; 

then A C_ A *, B C_ B*,  and sup A = sup A *, inf B = inf B* in 1~3, and (A *, B *) 

is a non-empty jump of 1)2 in 123. This shows 

Jump (121,123)[ =< I Jump (121, lh)[ + I Jump(D~, ~3)1 < h. 

For (III), let a E T1. Then Ded (a, 1~1,122 U T2) = {a} implies 

Ded(a,121,123UT3)=Ded(a,D,z,123UT3)={a}. For (IV), let a~T3\T~ and 

A = Ded (a, 121,123). If a ~ T2, (121, 7"1) C_ (112, Tz) (good) implies 

O ~ Ded(a ,  111,112) C A. If a ff T2, (O,2, T2) C (123, T3) (good) yields 

Q5 ~ Ded (a, 112,123) C A. Hence A ~ O in any case. 

For (V), let a E 113\111, A = {z ~ 121 [ z < a}, and B = Ded(a ,  121,113). We first 

show c o f ( A ) =  No. If a ~ fh ,  this is clear by (121, T1)C (D,z, T2) (good). So 

suppose a ff 112. Let D = {z E 112 [ z < a}. First assume that for each z E D 

there exists a w C A  with z =< w. Then clearly c o f ( A ) = c o f ( D ) = N 0  by 

(122, Tz)C (123, T3) (good). On the other hand, if there exists an element d G D 

with A < d, we obtain A = {z E 1211 z < d} and so cof (A)  = 1% by (121, T1) C__ 
(D~, T2) (good). 

Next we show the part of (V) concerning B. Let b = inf B ~ ~13 and E = 

B nDa .  Note that if E ~ O ,  then E = Ded(e,121,Da) for any e ~E, and hence 

inf E ff E and co l (E)  = ~o by (121, T1) _C (1),2, T2) (good). We first show that B is 

unbounded below. By way of contradiction, assume b E B. If b E 1).2, we obtain 

in fE  = b EDa,  a contradiction. If b ff.l-h, then the set Ded(b , lh , l l 3 )  is un- 

bounded and hence contains elements smaller than b, contradicting b = inf B. 

This shows b ff B as claimed. 

Now if E ¢ ~  and in fE  = b in 1"13, then c o i ( B ) = c o i ( E ) = ~ o .  Let e ~ E .  

There exists x E T2 C_ T3 with {z E 121 [ z < e} < x < E. Thus x = in fE  = b and 

A < x  < B  as claimed. On the other hand, if E = O  or E ~ O  and b < i n f E ,  

there exists an element [ E 113 with [ < a and (b, []a3 n Oa = ~ .  Hence (b, []a~ C_ 
F = Ded(/ ,  Da, 123), b = inf F ~ T3, coi(B)  = coi(F)  = l, lo, and {z E Da [ z < f} < 

inf F < F by (D~, T2) C_ (113, T3) (good). But any z E f~l with z < a satisfies z < [, 

thus A < b < B, establishing the first half of our claim for B. The rest of (V) 

follows by a symmetry-argument. 
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DEFINITION 4.9. Let A be a cardinal, j < A an ordinal, (~i, < ) good A-sets 

and T~ C l), \1"~, for each i < j. If (~,, T~) C_ ( ~ ,  T~) (good) whenever  i < k < j, 

and 12~ = U,<~ll , ,  T~ = U , < ~ Z ,  ( ~  o T~,=<) = U,<~(ll,  u T~,= < )  whenever  
k < j  is a limit-ordinal, then (~,, T~),< r is called a good A-system. 

LEMMA 4.10. Let A be an uncountable regular cardinal, j < A a limit-ordinal, 
(12,, _-< ) good A-sets and T~ C_ ~}, \11, [or each i < j, such that fit,, T~),< r is a good 
A-system. I[ fl  r = U,<r~, ,  Ts = U,<r T~, and (fl r U T~, _-<)= U,<r(12, u T~, _-< ), 
then (l-l~, < ) is a good A-set, T~ C_ fir\t~r, and (fl,, T~)C (lqi, T~) (good)for each 
i <]. Hence (l-l,, T~),<s+~ is a good A-system. 

PROOF. First we show that (12r, =< ) is a good A-set. Here, condition (1) of (4.1) 
is obvious. For (4.1)(2), let a GI)~. Choose i < j  with a Gl)~. Now Lemma 4.6 

shows cot,~ (a) =co t , ,  (a)  = I~0. Let us now check conditions (II), (VI) and hence 
also (4.1)(3). Let i < j .  Since 

Jump(ll,,12j U(Tj\T~))= U Jump(~, , l )k  U(Tk\T~))= U Jump(~, , f Ik) ,  
i<k<j i<k<l 

we have IJump(O,,ft,) I _-< -< IJump( ,,O, U \ T,)I < A, showing (II). Now let 
x,y E l ) ,  with x < y. Choose A C lx, y],~,\(f~, u T,) such that IA I= A and 
cofa,(a) = no for each a E A. Since 1Jump(lq,,l)j 12 (Tj\T~)) I < A, there exists a 
set B C_ A with I BI=  x such that for each a E B, the pair (Ao,Bo), where 
Aa = {z E 1), I z < a }, B~ = {z ~ l-l, [ a < z}, is an empty jump of l), in O r U Tj, 
thus a = s u p A ~  = in fBa  in ~r and a ~ J \ ( 1 2 r  12 Tj). This shows B C  
~j \ ( f l  r U Tj), and by Lemma 4.6 we obtain cotaj ( a ) =  cota, ( a ) =  I, lo for each 
a E B .  

Now we claim Tj C ~r \~j .  Indeed,  whenever a E T~ C h , \ l ) ,  (i < j ) ,  we have 
a ~ l)j \12r by Lemma 4.6, and 

Ded(a,12, ,f l j  U Tj) = U Ded(a,l-l, , l~k U Tk) = {a}, 
i<k<j 

thus establishing also (4.7)(III). Lemma 4.6 also implies 1"~, _C l-lj (good) for each 

i < j. To finish the proof that (ft,, T~) C_ (l)s, Ts) (good) for each i < j, it remains 
to check (4.7)(IV) and (V). Let i < j .  For (IV), let a ~ Tj\T~ and k < j  such that 
a E Tk. Then 

Ded(a , l I , ,12 j )_DDed(a ,~ , , l ' Ik )~O by (~},, Ti)C_(fl~, T~)(good). 

Finally, we prove (V). Let a E f~s\12, and choose k < j such that a E l)k, thus 
i < k < j. Put A = {z l z < a}, B = D e d ( a , ~ , , l - l k ) ,  C = Ded(a , l ) ,  lqs). 
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Since (~,, T~) C_ ( ~ ,  %) (good), we obtain cof(A) = No, and there is an element 

x ~ Tk _ Tj such that, in ~k, we have A < x < B, B is unbounded below and 

coi(B) = No. Hence x = supA = infB in ~k and thus also in ~j by Lemma 4.6. 

Since A < C and x~f~i ,  we obtain A < x  < C and thus x = i n f B  =inf C by 

B C C. Hence C is unbounded below and co i (C)=co i (B)=No .  Now a 

symmetry-argument implies the rest of (4.7)(V). 

Another essential technique for the proof of Theorem 2.11 is the following 

natural inserting process. Suppose that (M, < ) is a chain, (M, <i ) are p.airwise 

disjoint chains such that M O M~ = O for each i E / ,  and M ' =  M 0  U,~IM~. 

Under certain additional assumptions we want to define a linear order < '  on M' 
which extends < and =<i for each i E / .  First let a,, b~ E M ( 0  # A~, Bi C M) for 

each i E I  such that a ,<b i  (A~<B,)  and no x E M  satisfies a , < x < b ~  

(Ai < x < Bi). Whenever i,] E / ,  i #  j, assume that either b~ =< aj or bi =< a~ (there 

exist either a E At, b E B~ such that b =< a, or a E A~, b E B~ such that b < a). 

Then we say that we insert M~ into M between a~ and b~ (A~ and Bi) for each i ~ I 
if we define the order =<' on M' in the natural way such that 

(M,<= )C_ (M',<'), (M,=< , )C(M' ,< ' ) ,  and a,<'M~<'b~ (A, <'M~ <' B~) 

for each i E / .  Now assume in addition that (M, =< ) is dense and {a; I i E I} _C 

/~t\M. Then we insert M~ into M at a~ for each i ~ I if we insert M~ into M 

between {x E M i x  < a,} and {y E M l a, < y} for each i E I. 
As an example we remark that if (ft, =<) is a dense unbounded chain, we 

obtain (~, =< ) by inserting, for each jump (A, B) of fL an element a = a(A, B) 
into ~ between A and B. 

We will apply such an inserting-argument for the following 

REMARK 4.11. For each tree (T,--<r) E ff  there exists a linear order -< on 

T- = T\Mid (T) - -  as described below - -  which is called the associated order on 
T~ .  

DEFINITION OF ~ .  For each ordinal i, let 

T~={xET-] ( {yET[y<Tx} ,<-T )= i }  and ST= T.~\ o T 7, 
i<i 

and let h = h(T) be the least ordinal ~ such that T~ = 0 .  Thus we have 

To=rain(T,<--r), T;-+I= T{ 0 U M. 
aeS2  
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whenever i < h (where Ms is, as in §2, the set of all minimal elements of T-  

above a),  and 

TT = I,..J T~ (.J (..J {Me t3 T - [ P m a x i m a l p a t h i n  [..J T)-} 
/ < i  j < i  

whenever i < h is a limit-ordinal, and h is the height of T. By induction, we now 

define linear orders =< on T~- for each i < h such that (T:/, <= ) C (T-/, <= ) 
whenever i < j <  h. Then we put (T-,<_-)= (-Ji<h(Zi-,~). Of course, To is 

trivially ordered. 

So suppose 1 < i < h and let (T i ,  _-< ) already have been defined for each j < i. 

First assume that i = k + 1 for some ordinal k. Let Zk = {a ~ S~ ] Ma # ~}. For 

each a E Zk we define a linear order on M~ + = Ma 0 {a} by putting (M~, ----a ) C 
+ 

( M ~ , = )  and M a < a  (a < M ~ )  if a * = 3  ( a * = l ) ,  i.e. if Ma is well-ordered 

(inversely well-ordered). Now we define (TT, = ) such that (T~-, =< ) C_ (T?, = ) 

and, for each a E Zk and z ~ TT\M+~, we have (M~ +, -< ) C_C_ (TT, < ) and z < M~ 

(M~ < z)  in (TT, =< ) whenever 

either z E T~- and z < a (a < z) in (T~, < ), 

or z E M ;  for some b ~ Zk with b < a (a < b) in (T~-, = ); 

thus the points a ~ Zk are simply "replaced" by the chains (M+~, <= ). 
It remains to consider the case that i is a limit-ordinal. Let P be a maximal 

path in I, Jj<~ Tj- and P. = {a E P I a* = n} (n = 1, 3); we may assume P1 < P3 as 

induction hypothesis. For M e  = Me f3 T-  C $7, we have either M e  = {ap} or 
Me={ap,  cj,} with a ~ =  1, c ~ = 3 ,  and we define a linear order on Me,  

correspondingly, either trivially or by putting ap < cp. Then define (TT, _-< ) by 

inserting, for each such path P, M e  into 1,3j<,(T,, < ) between P~ and P3, i.e. we 

put P1 < Me  < P3. This defines our linear order < on T-.  

The subsequent remarks to the construction above will be used at the end 
(Part IV) of the proof of Theorem 2.11. 

REMARK 4.12. (a) We have min(T,_-_T)=max(T- ,_-  < )  (=min(T- ,_-<))  if[ 

T E J - R  (T E grL). 

(b) Whenever i + 3 < h ,  ak~T.~÷k ( k = 0 , 1 , 2 , 3 ) ,  ao*=l ,  and ak<Tak.~ 
(k = 0, 1, 2), then we have a0 < a2 < a3 < a~ in (T- ,  _--- ). 

(c) If a E T- ,  a * = 3, and M~ # O, then in (T- ,  =< ) we have M~ < a, (Mo, < ) is 

an uncountable well-ordered set isomorphic to I Ma I, and M~ 0 {a } is closed in 

( T - , - )  such that a =supM~.  
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(d) If a ET- ,  a * = 3 ,  M. = 0 ,  and a~min(T,=<T),  then there exists a 

maximal element b in (T- ,  _-< ) with b < a. 

(e) Suppose that i < h is a limit-ordinal, P a maximal path in I,.Jj<~ T .  and 

P. ={a  E P l a * = n }  (n =1,3) .  If Mp ={ap}, we have PI<ap<P3 and a p =  

= bp = cp = sup P1 = inf P3 in (T- ,  < ). If Mp = {ap, bp, cp} with ap* = 1, * 2, * 3, we 

have P1 < ap < cp < P3 and ap = sup P~, cp = inf P3 in (T- ,  =< ). 

PROOF. (a), (b), (c), (e) follow immediately from T ~ ~- and the definition of 

(T- ,  =< ). For (d), suppose a ~ T~ (i < h). We distinguish between two cases. 

If i is not a limit-ordinal, by a ~ min(T, ----r ) we have a ~ Mc for some c E T- .  

By a* = 3 it follows that c* = 1, hence (Me, <-- ) is inversely well-ordered, and 

there exists a maximal element b in (Me, _--<) with b < a. But now any other 

element z E T-  with z < a satisfies z <= b, since M, = 0 .  

On the other hand, if i is a limit-ordinal, let P _C [.-Ji<~ Tj: be a maximal path 

with P < a. By a G Mp and since a* = 3, we obtain Mp = {ap, be, Cp} with 

a ~ = l ,  be*=2, c ~ = 3 ,  and a=cp. If M,~ = Q ,  put b=ap, and if M ~ O ,  

(M,;,_-<) is inversely well-ordered, hence let b = max(M,,,  =<) to obtain the 

assertion. 

After these preparations, we can now come to the 

PROOF OF THEOREM 2.11. Our proof can be divided into four main parts. 

Part L Preliminaries 
If A is countable, we obtain I = I = 1. Hence we simply take ~ = Q and 

identify T~(I))= { -  ~} (T , (O)=  {~})with TL (TR), respectively. This shows that 

we may assume from now on that A is uncountable and regular. 

First, let (T~, =< ) ((TZ, _-< )) be linearly ordered by the associated order on T~ 

(TZ), respectively, according to Remark 4.11. Then we extend these orders in 

the natural way to obtain a chain (TZ 0 T~, =< )satisfying TZ < T~. Now we will 

constuct our chain (~, =_< ) such that, finally, T~ 0 T~ C_ ~\f~. 

We split A =l. .Jk~Ak with IA I=A and minAk->k for each k E A .  By 

transfinite induction, we will define good A-sets (f~, --- ) and sets T~ _C ~ \ ~  for 

each i E A such that (12,, T~),~x is a good A-system and To = (T~ 0 TZ)\{ oo, - ~ } .  

(We will also have [T~[_- < A for each i E A, but this is for our purposes of no 

importance.) Furthermore, for each k E A we will define a bijection 

~bk : Ak --> Mk, where M~:= {(a, b, c, d)  E fl~, I a < b < c < d}. Suppose i E Ak C_ A, 
i ~ = (a, b, c, d)  U M~, say, and that ~+~, T~+~ are already defined. Observe here 

that k =< min A~ < i, thus f ~  C_ f~ C 12~+~. Then we will also define an isomor- 

phism ~O~ :[a, b],,.,--* [c, d ] , , ,  with the following properties: 
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( + )  If we extend ~, (in the uniquely determined way) to an isomorphism 

t~i :[a, b]a,.,--~ [c, d]~ .... then 

(r,+, n [a, bla,+,) ~, = T~+~ n [c, 

( + + ) Whenever j, m E A, ] < i, j ~ Am, ~b, has been defined as above, and 

i *~ =]*~, then ff~ l[a, b]a,+, = ~,. (Here 0 1 A  denotes the restriction 

of the mapping & to A.) 

Then, as we will see later, (~, =<)= U,~a(O~, =<) satisfies the assertion of the 

Theorem. 

Part II. Construction of our good A-system (12,, T~),~ 

Let j E A, and assume that (~2,, _<- ), T~, ~b, for each i < j and 0~ for each i E A 

with i + 1 <] ,  are already defined such that (12~, T~),<j is a good A-system of the 

form described in Part I satisfying ( + ) and ( + + ). We wish to define (flj, ~ ), Tj, 

and, provided that ] = i + 1 for some ordinal, also $~, such that (IL, T~)~<I+~ is a 

good A-system and ( + )  and (+  + )  are satisfied correspondingly. Then we 

always choose 4'i to be any bijection from A~ onto M~. 

Step 1. Assume j = 0 

We choose a good A-set C of countable coterminality by Lemma 4.2. For each 

pair (a, b) of points a, b @ X = TZ 0 T~ such that a < b and [a, b]× = {a, b}, 
choose a copy C,.b of (7, let f~  be the disjoint union of all these copies C,.b (note 
that by mL = max(T~, =<) < min(T~, =<) = mR we obtain l-lo_~ C . . . . .  ), and 
define a linear order < on D.o tJ X by inserting C,,b into X between the points a 

and b. We put T.=X\{max(T~,<=),min(TZ,<=)}. (To might be empty; then 

rio = C ...... . If J T~ I = 1, note for later purposes that cof(~L) = cof(C . . . . .  ) = No.) 
All we have to check is that (f~a, -<- ) is a good A-set and satisfies condition (VI) of 

(4.7), but this is obvious. 

Step 2. Assume that j is a limit-ordinal 

We simply put ~j = U~<jilj, Tj = U,<j Tj, 

U,<j(I), u T~, =< ). Then l)j is a good A-set, Tj _C ~j\Oj, 
good A-system by Lemma 4.10, finishing this case. 

and (i-li U Tj, <=) = 
and (l'l,, T~),<j+, is a 

Step 3. Assume that j = i + 1 for some ordinal i E A 

Let k E A  satisfy i E & ;  hence k_-<min&-<_i. Assume i * ~ = X =  

(a, b, c, d) ~ Mk, say, thus a, b, c, d E l-lk C_ 1), and a < b < c < d. Let A be the 

set of all n ~ A with n < i and n E A,. for some m E A such that n*m = X. We 

distinguish between three subcases, namely A = 0 ,  sup A E A, and sup A ~ A. 
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Case 1. Assume A = 

The assumption guarantees that condition (+  +)  is empty. By condition 

(4.7)(VI), there are sets 

A ={a. In EZ}_C[a,b]a,\(fl, U T~) and B ={b. In ~Z}C_Ic, d]~,\(O, O T,) 

such that cot(x) = rio for each x ~ A U B, a. < a.+t and b, < b.+t for each n ~ Z, 

and a = inf A, b = sup A, c = inf B, d = sup B. For each n E Z, let C. (C'.) be a 

copy of A. = (a., a.+l)n,UT. 0 {a., a.+l} (B. = (b., b,.+l)n,ur, 0 {b., b.+~}) and 7r. 
(zr'.) an isomorphism from A. (B.) onto C. (C'). Put 

a,~a,+,=a,O U (A. ha,) ~'-0 U (B. na, y'o 
n ~ Z  n E Z  

and 

Tj = T~O U (A.\fl,  f - O  U (B. \a , f ' . .  
n E Z  n E Z  

We define a linear order =< on Oj U Tj by inserting, for each n ~ Z, C. into 

f~i U T~ at b. and C" into 11~ U T~ at a.+~. To be explicit, we thus have, in 

particular, 

and 

(b. ,, b.)a,ur, < C. < (b., b.+,)n,ur, 

a~" = min C., a ~ ,  = max C. ~ Tj 

for each n E Z. It follows directly from this construction that ~ is a good A-set 

and that f~i C_ l~j (good). We claim (IL, Z)  c_ (~j, T,) (good). Condition (4.7)0) is 

clear, and ( I I ) i s  obvious since IJump(n,,n,)l=lA u ul=N0. Conditions 
(III), (IV), (VI) also follow directly from our construction. For (V), let a ~ l~j \f~, 
thus, e.g., a E (A. rl f~)~. _c C. for some n ~ Z. Then (V)(i) follows from 

Deal (a, f~, I]j) = (A. N fti)~-, and (V) (ii) from cofa,+, (b.) = cola, (b.) = No = 

coia,+,(b.+l) and from cota, (A. N f~) = No since coi,, (a.) = cola, (a,+l) = No. 

Condition (V)(iii) is immediate by construction, as noted above. Now (f~, T,)i<; 

is a good A-system by Lemma 4.8 and induction hypothesis. 

Finally, we define an isomorphism 6, from [a, b].,+, onto [c, d],,+, by putting 

a*'=c, b*'=d,  ,ilA. na,=#.lA, na, and na,=#'ln, na,. 
Then the checking of ( + )  is straight-forward, finishing this case. 

Case 2. Assume A ~ O and n = sup A E A 
Let m ~ A satisfy n E A,. and n ~- = X E Mm, thus rn =< n < i and f~m C 1~. C 
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fl~. Here we have to define l~j -- 1~+~ and ~Oi such that, in particular, ~O~ extends 

the isomorphism ~b, :[a, b]n.+, ~ [c, d],.+,. First note that whenever (A, B)  is a 

jump of [a,b]n .... then (A*. ,B*.)  is a jump of [c,d], .... and any jump of 

[c, d]n.+, is of this form. We obtain f~j U Tj by inserting points into IL+I U T.+I 

between sets A and B (A*- and B ~-) for certain jumps ( A , B )  of [a, b],.+,. So 

put ~Oi I[a,b]a.+,= ~O,, and let ( A , B )  be a jump of [a,b]n . . . .  thus supA = 

inf B E ~.+t\fL÷l.  We distinguish between 4 subcases. 

Subcase (i). We assume that no x E [a, b]n, (y E [c, d]n,) satisfies A < x < B 

(A *- < y < B *-), respectively, in I-L. 

In this case, no point is inserted - -  neither between A and B nor between A +- 

and B*-. Observe that there exists a point x E T,+t with A < x < B iff there 

exists a point y E 7".+1 with A*. < y < B  *., since I-L+1 satisfies condition (+) .  
Subcase (ii). We assume that there exists a point x E [a, b]n, with A < x < B, 

but no y E[c ,d]n ,  with A*- < y  <B*-.  

First notice that x 1~ fl,+~, hence n + 1 < i. Next we claim that there is no 

z E[c, d]~, with A *o < z <B*-.  Indeed, assume there were such an element 

z E T~. If z ~ T.+t, we obtain Ded (z, fl.+l, 1"~)# O by (ll.+~, Tn+l)~ (['~i, T/) 
(good), in contradiction to the assumption of this subcase. If, however, z E T,+I, 

let 4, = t~. be the extension of g,, to an isomorphism from [a, b]~.+, onto 

[c,d]a.+,. Then z' = z *-~ satisfies A < z'  < B and z'  E T.+~, hence 

Ded(z',fl.+~,l-l~ U T~)= {z'} in contradiction to the existence of x. This shows 

our claim. 
Now let D be a copy of the set C = D e d ( x ,  fL+~,l~ U T~) and zr an 

isomorphism from C onto D. We insert D between A *. and B*-, let the points 

of (Ct')l~,) ~ ( (CN T~) ~) belong to l)j (Tj), respectively, and put $~1C=  

Note that by (1),+~, T.+I) _C (1~,, T~) (good) we have cof (A)  = coi(B) = N0, thus 

col(A*-)  = coi(B*~)= ~t0, and C f3 ['l,, and thus also D fq 1)~, is unbounded 
below and above and has countable coterminality. Furthermore, we have inf C, 

sup C E C f3 Z,  hence A *- < min D < D fq l)j < max D < B*, and 
minD,  m a x D  ~ Tj. This implies (4.7)(V) for l '~,~j, Tj, and any a ' E D  A f~ ,  
since any z GI'L with z < a' ( a ' <  z) satisfies z < m i n d  (maxD < z) by the 

assumption of this subcase. 

Subcase (iii). We assume that there exists a point y ~ [c, d]n, with A*- < y < 

B*-, but no x ~ [a, b]n, with A < x < B. 

We deal with this case symmetrically to (ii). 

Subcase (iv). Assume that there are points x ~[a,  b]n,, y ~[c ,  d]n, with 

A < x < B  a n d A * - < y < B  *-. 
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Again note that x, y ~ l~,+t and n + 1 < i. We put 

C = Ded (x, fl.+~, ~,), D = Ded (y, IL+~, l~), 

a '= infa ,  C, b'=supr~,C, c '=inf~,D, d '=sup~,D.  

Observe a',  b', c', d '  ~ T~. Obviously, C = [a', b']~, and D = [c', d']n,. By 
~.+~ C_ f~, (good) we obtain cof(A) = col(B) = col(A*-) = col(B*-) = cot(C) = 
cot(D) = No. This shows that we can deal with the intervals [a', b']r,,, [c', d']n, 
precisely as we dealt with the intervals [a, b]n,, [c, d]n, in case 1, with the only 
exception that the endpoints of the intervals belong to T~ instead of f~. Thus, 
both C and D are split into countably many subintervals, copies of these 

intervals are inserted into D and C, respectively, to obtain f~j, and the 

isomorphism $~ is defined accordingly. 

It remains to show that if these constructions are performed for each jump 
(A, B) of [a, b]n .... then our sets l-Is, Tj satisfy the required conditions. 

First note that the inserting processes have only been carried out if n + 1 < i 
and in this case at most [Jump(fl,+~,fl,)l. M0<A times, which implies 
[Jump (fl,, f~j)l < A. Now it is straight-forward to verify that ftj is a good A-set, 
and (I'~, T~)_C (l)j, Tj) (good) also follows immediately from our considerations. 

Hence (iqp, Tp)p<j is a good A-system by Lemma 4.8, satisfying the requirements 
( + ), ( + + ) by construction. 

Case 3. Assume A # O and s = sup A ti~ A 
Obviously, s is a limit-ordinal and s =< i. Observe ~s = U.<~D,.,  T~ = 

U.<sT, ,  and whenever n , m ~ A  satisfy n < m ,  then g,m I[a,b]...,=¢. by 
induction hypothesis and (+  +). This enables us to define an isomorphism 
~b :[a, b]n, --> [c, d]n~ satisfying ~b I [a, bin.+1 = ~b. for each n E A, such that, if we 
extend $ to an isomorphism ~ :[a, b]a. ~ [c, d]a,, then 

(T, n [a, b]a,) ~; = T, n [c, 

Now we may continue precisely as in Case 2, only dealing with fl,, T,, ~ instead 

of 1~.+1, T.+I, ~,, in order to obtain a good )t-set f~j, a set Tj _ ~s\l~s and an 

isomorphism g,~:[a,b]r,j~[c,d]r,~, such that (I'L,T.)C(I~s, Ts ) (good), 

¢,, Ita. b]n. = ¢  and 

(T jn  [a, b]a~) ~ = Tj n Ic, 

Hence again (f~. T~)~_~j is a good A-system, completing this case and Step 3. 
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Part IlL The chain (1), _-< ) is doubly homogeneous and satisfies cot (a)  = Xo for 

each a E 
Now suppose our good A-system (1~, T~),~, is constructed as prescribed in 

Parts I and II. We put f t = U ~ f t i ,  T = U , ~ , T ~  and (fIUT,_-<) = 

Ui~,(lI~ U T~, =< ). First we want to show that (l'l,-<_ ) is a doubly homogeneous 

chain. 

Indeed, let a, b, c, d E f~ satisfy a < b and c < d. By Remark 2.6, we have to 

construct an isomorphism ~O:[a,b]a-'-~[c,d]n. Since 1) is unbounded, we may 

assume b < c w.l.o.g. Choose m E A such that a, b, c, d E lL,, and let I be the 

set of all i E A such that i E A~ for some k E A with k => m and i *k = (a, b, c, d). 

Note that It n A~ I = 1 for each k E A with k => m, hence I II = X and I is cofinal 

in A. Thus 1)= U~III~+I, and for each i E I  there exists an isomorphism 

O~:[a,b],,+,---~[c,d]n,+~ such that whenever i, j E I  satisfy j < i ,  then 

Oi I [a, b]a,., = ~0j. Hence we may define the required isomorphism qJ simply by 

putting ~O I[a, b],,.1 = ~b~ for each i E I. 

Secondly we show that c o t ( a ) = l ,  lo for each a E l l .  Indeed, let i EA and 

a E l l ,  Then cota, ( a ) = N o  since (II,,_-- < )  is a good A-set. Now Lemma 4.6 

implies cotn(a)  = ~1o. 

Part IV. We claim that we may perform our Construction 2.16 such that 
(TL, <L ) = (T,(II), <,), (TR, <=R ) = (T,(I1), <=, ) 

W.l.o.g. we only show (by transfinite induction) that (TR, --<--a ) may be taken as 

the tree (T,(I1), _-<, ), i.e. satisfies the construction requirements of (2.16). 

Put m:=  max(T~, ~ ) = rain( TR, ~ s ). Observe that indeed T~\{m } C To C T C 
by Lemma 4.6(b) or as in the proof of (4.10). In the following, we will have to 

distinguish carefully between the orders (TR,<=R), (E(fl),--<,) which are trees 

and the chains (T~\{m},<)C_ ToC( I IU  T,=<). As in Remark 4.11, we put 

Y~ = {x E Y~ I({y E TR l Y < R X } , a R )  ~ i} for each ordinal i; let h be the least 
ordinal a such that T ~ = O ,  thus T ~ =  Ui<hTRi.  For A C_T~, MA again 
denotes the set of all minimal elements of (TR,=-NR) above A. 

Step 1. Start of the induction 

First notice that we have m > To, hence m > lloU To according to our 

construction of (lqo, To) (see Part II, Step 1). By ft0 C_ llj (good) for 1 _<- j E A and 

Lemma 4.6, flo is unbounded above in II. Hence we may identify m = oo E ~ .  

Next we choose oo' E l )  such that oo'< min(TT~, =< ). This is in harmony with 

TR E J'R, i.e. m* = 3, cf. Definition 2.17. Furthermore, if TR = {oo}, we have 

cof(f~o) = No by the construction in Part II, Step 1, hence cof(l~)= N0 by 

m = sup lIo = sup II in 1~, and thus T~ = T, (f~) is established in this special case. 



260 M. DROSTE AND S. SHELAH Isr. J. Math. 

Step 2. Induction step from i to i + 1 

Next let i < h and a E TRI, and assume a '  < a, a* = 3 (cf. (2.16); the case 

a < a' ,  a * =  1 is dealt with symmetrically). We distinguish between the cases 

Mo = ~  and M o # ~ .  
First assume M, = O; we claim cof(a)  = ~o in ~ (thus by (2.16) a has to be a 

maximal element in T,(~q), in accordance with M~ = ~).  If a = ~, this was shown 

above. Hence assume a # ~  now. By Remark 4.12(d) there exists a maximal 

element b in (T~, < ) with b < a. Now by Part II, Step 1 the set {x ~ l~o I b < x < 

a} is a good h-set of countable coterminality. This shows cof~(a) = cof~o(a) = ~o 

by Lemma 4.6, as claimed. 

Next assume M , # O .  By Remark 4.12(c), we have M , < a  in (T~,=<), 

furthermore (M~, _-< ) is an uncountable well-ordered set isomorphic to [Mo [, and 

Ma tJ {a} is closed in To t3 {oD} _C ~o such that a = sup Ma in ~o. By Lemma 4.6, 

M~ t_J {a} is also closed in ~ such that a = sup Ma in ~.  This shows (M~, < ) =  

co l (a )  # ~to. We may assume a '  < Mo by induction hypothesis; now choose, for 

each x ~ M , ,  an element x ' E ~  with x < x ' < { z E M ,  l x < z }  and also 
max(Mx, < ) <  x' if M~# O. Note that a * =  3 implies x * =  1 for each x E M, 

which is in accordance with x < x'. 

Hence in both of these cases the set (M,, =<) satisfies the construction 

requirements in (2.16). 

Step 3. Induction step for limit-ordinals 

Here  let i <  h be a limit-ordinal, P a maximal path in I ,  Ij<iT~i, and 

P n = { a E P [ a * = n }  ( n = 1 , 3 ) .  If a E P I  ( a ~ P 3 ) ,  let a + be the minimal 

element in P above a, i.e. {a ÷} = P fq M,,  hence a + E  P3 ( a + ~  P1) by a * =  1 
(a* = 3), and a < a ÷ (a ÷ < a);  we put Va = [a, a ÷] (Va = [a ÷, a]), respectively. 

Note that Va _D V~ whenever a, b U P and a <R b (cf. (4.12)(b)). We have either 

Me = {ap} with ae* = 2 or Mp = {ap, bp, cp} with ap* = 1, bp* = 2, c~* = 3. If 

Me = {a~,}, we have P~ < ap < P~ and ap = sup P~ = inf P3 in To by Remark 

4.12(e), hence also in ~ by Lemma 4.6, and thus f')a~P Va = {ap}. We put a~, = ap 
according to (2.16) which is in harmony with ae  = 2. 

If, on the other hand, IMp [ = 3, we have PI < ap < cp < P3 and ap = sup P1, 

cp = infP3 in To by Remark 4.12(e), hence again also in ~ by (4.6), and thus 

f ' ) ,~ ,  V, = [ap, cp]. By ap - 1 (cp* = 3), (Map, _-< ) ((M~, =< )) is inversely well- 

ordered (well-ordered), if it is non-empty, in which case we put ti = 

max(M~,  _-< ) (~ = min(M,~, _-< )), respectively. If M~ (M,~) is empty, put ti = ae 
(?. = Cp). In any case we have a~, <= ti < ~ _-< cp. Now choose a~,, c~,E ~ and an 

element xe EI~ with ap <=~ <a'p<xp <c~<~<-ce in harmony with a ~ =  1, 
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C~=3. We have by E TR\T~ and bp ~ fl, but here we may identify bp with xv 
and put b~ = by in harmony with b,* = 2. Hence the construction requirements of 
(2.16) for limit steps are also satisfied. This finishes the proof that (TR,----<R ) =  

(ztt ), =<,). 
With this, Theorem 2.11 is proved. 
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